Thermodynamics and Kinetics of DNA Nanostructure Assembly

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics and Kinetics of DNA Nanostructure Assembly Development of an Artificial Genetic System Capable of Darwinian Evolution by Hanyang Yu A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2013 by the Graduate Supervisory Committee: John C. Chaput, Chair Julian J.-L. Chen Hao Yan ARIZONA STATE UNIVERSITY May 2013 ABSTRACT The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution. i ACKNOWLEDGEMENTS First and foremost, I would like to thank my wife Zhe for her love, support and patience. Earning a Ph.D. degree in a foreign country would be an unimaginably difficult mission for me to accomplish if she was not by my side encouraging and spurring me on along the way. As a scientific researcher herself, she initiated numerous stimulating discussions with me and I benefited a lot from her sparkling ideas. I am especially indebted to her for her devoting more time to taking good care of our daughter. I am also thankful for my daughter Audrey, who brought innumerable little moments of fun and happiness to my life and also made me become a more independent and responsible person. I am grateful to my parents for their understanding and support. They provided everything I need to finish my study in China and encouraged me to study abroad even though knowing they would only be able to see me very infrequently thereafter. After Audrey was born, they traveled a long way from China to an unfamiliar country to see us and took over the chief responsibility of babysitting Audrey, so that I could focus more on my research. I owe them too much for their dedication and sacrifice. I want to express gratitude to my parents-in-law. They have been supporting Zhe and me in many ways. Their help of looking after Audrey was crucial to release our anxiety and stress as new parents. I want to acknowledge my mentor, Dr. John C. Chaput. He inspired me to explore a thrilling field of science full of challenges, and provided a privileged opportunity to work on exciting research projects. He taught me how to design experiments seamlessly, how to present results passionately and how to write articles accurately. Under his guidance, I was able to grow from a student to a qualified researcher armed with critical ii thinking and solid experimentation skills. He broadened my knowledge by encouraging me to attend seminars, conferences and to converse with world renowned scientists. I am also grateful to the members of my committee, Dr. Julian Chen and Dr. Hao Yan, for their time and advices. They challenged me to think more deeply about the significance of my projects and gave valuable suggestions on how to present research to a broad audience. I also want to thank all the former and present graduate students, postdoctoral fellows, and lab researchers who I have interacted with along the way. Their advice and support have been instrumental to my accomplishments. I want to especially thank my collaborators Dr. Noureddine Fahmi, Dr. Su Zhang, Bing Jiang and Matthew R. Dunn. Without their contributions, my research projects would not be as successful and complete as it is today. I would like to thank Department of Chemistry and Biochemistry at ASU for accepting me into the Biochemistry PhD program and offering the opportunity to meet excellent faculty, talented students, brilliant researchers and friendly staff. I would also like to thank the Biodesign Institute and the Center for Evolutionary Medicine and Informatics for creating a collaborative and inspirational working environment. I would like to thank the Graduate & Professional Student Association at ASU for sponsoring me to go to an international conference and to share my research findings with the scientific community. iii TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES .............................................................................................................x CHAPTER 1. IN VITRO EVOLUTION OF NATURAL AND ARTIFICIAL NUCLEIC ACIDS ....................................................................................................................1 1.1. Abstract .........................................................................................................1 1.2. In Vitro Selection of Natural Nucleic Acids .................................................2 1.2.1 In Vitro Selection of Nucleic Acid Aptamers ...................................3 1.2.2 In Vitro Selection of Nucleic Acid Enzymes ....................................6 1.3. In Vitro Selection of Modified Nucleic Acids ..............................................8 1.4. Threose Nucleic Acid ..................................................................................10 1.4.1 Initial Synthesis of TNA ..................................................................10 1.4.1.1 -D-Hexo-pyranosyl Oligonucleotide System ......................12 1.4.1.2 Pento-pyranosyl Oligonucleotide System .............................13 1.4.1.3 -L-Tetro-furanosyl Oligonucleotide System .......................14 1.4.2 Synthesis of TNA Phosphoramidites and Triphosphates ................18 1.4.3 Structure of TNA Duplex ................................................................20 1.4.4 Towards Evolution of TNA Polymers .............................................26 1.5. Projects ........................................................................................................33 1.6. References ...................................................................................................34 iv CHAPTER Page 2. APTAMERS CAN DISCRIMINATE ALKALINE PROTEINS WITH HIGH SPECIFICITY ......................................................................................................37 2.1. Abstract .......................................................................................................37 2.2. Introduction .................................................................................................38 2.3. Results and Discussion ................................................................................41 2.3.1. Selection for Single-Stranded DNAs that Bind to Histone H4 .......41 2.3.2. Affinity and Specificity of the DNA Aptamers ...............................45 2.3.3. Salt Effects ......................................................................................47 2.3.4. Directed Evolution ..........................................................................48 2.3.5. Studies of Site-Directed Mutations .................................................50 2.3.6. Implications of Aptamer Selection ..................................................55 2.4. Conclusion ...................................................................................................58 2.5. Experimental Design ...................................................................................59 2.5.1. General ............................................................................................59 2.5.2. In Vitro Selection ............................................................................59 2.5.3. Capillary Electrophoresis ................................................................60 2.5.4. Directed Evolution ..........................................................................60 2.5.5. DNA Sequencing and Analysis .......................................................61 2.5.6. Dot Blot Binding Assay ..................................................................62 2.5.7. Structural Probing by Hydroxyl Radical Footprinting ....................63 2.6. References ...................................................................................................63 v CHAPTER Page 3. DARWINIAN EVOLUTION OF AN ALTERNATIVE GENETIC SYSTEM PROVIDES SUPPORT FOR TNA AS AN RNA PROGENITOR .....................67 3.1. Abstract .......................................................................................................67
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller Et Al
    US 20130203610A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0203610 A1 Meller et al. (43) Pub. Date: Aug. 8, 2013 (54) TOOLS AND METHOD FOR NANOPORES Related U.S. Application Data UNZIPPING-DEPENDENT NUCLECACID (60) Provisional application No. 61/318,872, filed on Mar. SEQUENCING 30, 2010. (75) Inventors: Amit Meller, Brookline, MA (US); Alon Publication Classification Singer, Brighton, MA (US) (51) Int. Cl. (73) Assignee: TRUSTEES OF BOSTON CI2O I/68 (2006.01) UNIVERSITY, Boston, MA (US) (52) U.S. Cl. CPC .................................... CI2O I/6874 (2013.01) (21) Appl. No.: 13/638,455 USPC ................................................. 506/6:506/16 (57) ABSTRACT (22) PCT Filed: Mar. 30, 2011 Provided herein is a library that comprises a plurality of molecular beacons (MBs), each MB having a detectable (86). PCT No.: PCT/US2O11AO3O430 label, a detectable label blocker and a modifier group. The S371 (c)(1), library is used in conjunction with nanopore unzipping-de (2), (4) Date: Apr. 17, 2013 pendent sequencing of nucleic acids. Patent Application Publication Aug. 8, 2013 Sheet 1 of 18 US 2013/020361.0 A1 . N s Patent Application Publication Aug. 8, 2013 Sheet 2 of 18 US 2013/020361.0 A1 I’9IAI ::::::::::: Dº3.modoueN Patent Application Publication Aug. 8, 2013 Sheet 3 of 18 US 2013/020361.0 A1 Z’9IAI ~~~~~~~~~);........ Patent Application Publication Aug. 8, 2013 Sheet 4 of 18 US 2013/020361.0 A1 s :·.{-zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz iii. 9 iii.338 lii &S Patent Application Publication Aug. 8, 2013 Sheet 5 of 18 US 2013/020361.0 A1 s r Patent Application Publication Aug.
    [Show full text]
  • Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
    G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution.
    [Show full text]
  • Threose Nucleic Acid
    2/23/11! Something else…! •" Neither the chicken nor the egg came first! Alternative Ideas! •" Transitional forms that were later discarded! Or was it the “egkin”?! Some experiments with peptide nucleic acid! Threose Nucleic Acid (TNA)! (PNA).! PNA: Peptide backbone with bases! •" Threose is one of two sugars with a four- sided ring! Can act as template for polymerization of RNA! •" Fewer issues with incorrect linkages, From activated nucleotides! selection of correct handedness! (Böhler, et al., Nature, 376, 578! •" Replace ribose sugar in RNA with threose! & comments by Piccirilli, pg. 548 17 Aug. 1995! •" Can base pair with RNA! •" Could have preceded RNA! PNA could be simpler to form under prebiotic conditions! Main point is that a simpler thing (not necessarily PNA) ! could have preceded RNA! 1! 2/23/11! Focus on Energy! Membranes! G. Wächtershäuser! Inorganic - organic connection! •" Membranes provide enclosure! FeS2 ! (Iron pyrite)! –"Also fundamental for metabolism! Attracts negatively charged molecules ! •" Membranes never arise from scratch! Surface catalysis provides energy via formation from! –"Always passed down and added to! FeS + H2S! –"All derived from ancestral cell! •" T. Cavalier-Smith proposes membranes! Scene is hot sulfur vents on sea floor! –"Plus nucleic acid formed “ob-cell”! Some successes in simulations! Amino acids formed peptide bonds! –"Merger of 2 ob-cells formed first cell! Thioester World! H O 1." Need precursor to RNA world! H H S H O Thioester! S C. de Duve! C C O 2. !Need energy conversion! In Vital Dust! O !Protometabolism! Thiol + Carboxyl! Background:! H O H H O H O Ester! O Thiols involved in metabolism, particularly in ancient ! C C pathways! O O Hydroxyl + Carboxyl! Also can catalyze ester formation by group transfer! Reactions! e.g.
    [Show full text]
  • Darwinian Evolution of an Alternative Genetic System Provides Support for TNA As an RNA Progenitor Hanyang Yu†,Suzhang† and John C
    ARTICLES PUBLISHED ONLINE: 10 JANUARY 2012 | DOI: 10.1038/NCHEM.1241 Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor Hanyang Yu†,SuZhang† and John C. Chaput* The pre-RNA world hypothesis postulates that RNA was preceded in the evolution of life by a simpler genetic material, but it is not known if such systems can fold into structures capable of eliciting a desired function. Presumably, whatever chemistry gave rise to RNA would have produced other RNA analogues, some of which may have preceded or competed directly with RNA. Threose nucleic acid (TNA), a potentially natural derivative of RNA, has received considerable interest as a possible RNA progenitor due to its chemical simplicity and ability to exchange genetic information with itself and RNA. Here, we have applied Darwinian evolution methods to evolve, in vitro, a TNA receptor that binds to an arbitrary target with high affinity and specificity. This demonstration shows that TNA has the ability to fold into tertiary structures with sophisticated chemical functions, which provides evidence that TNA could have served as an ancestral genetic system during an early stage of life. he question of why nature chose ribofuranosyl nucleic acids as like DNA and RNA, can fold into structures with complicated func- the molecular basis of life’s genetic material has prompted a tions—a prerequisite for any RNA progenitor in a hypothetical Tsystematic analysis of nucleic acid structure with regard to pre-RNA world. the chemical etiology of RNA1. Results from these studies reveal that several potentially natural RNA alternatives are capable of Results and discussion Watson–Crick base pairing, demonstrating the capacity for these The discovery by Eschenmoser and colleagues that TNA can molecules to store genetic information.
    [Show full text]
  • 12.12.2017 1 CHAPTER 1 OLIGONUCLEOTIDES Part 2
    12.12.2017 Canonical nucleobase pairing and alternative base pairs CHAPTER 1 OLIGONUCLEOTIDES Part 2 – noncanonical nucleobases Natural and non-natural base pairs that function in polymerase reactions Self-assembly of whole genes and DNA nanostructures The technology tested by assembly of the kanamycin-resistance gene and growing the bacteria in the environment containing kanamycin after assembly and conversion of that gene. S. Benner et al., Beilstein J. Org. Chem. 2014, 10, 2348–2360. doi:10.3762/bjoc.10.245 1 12.12.2017 AEGIS – Artificially Expanded Genetic Information System AEGIS – Artificially Expanded Genetic Information System ZP CG S. Benner et al., Beilstein J. Org. Chem. 2014, 10, 2348–2360. doi:10.3762/bjoc.10.245 S. Benner et al., J. Am. Chem. Soc., 2011 , 133 (38), pp 15105–15112 AEGIS – Permanent orthogonal nucleobases surviving PCR ACGTZP-DNA crystal structures Electron density presented to the minor groove recognition site by polymerases „ minor groove scanning hypothesis” Error rate 0,2% per a PCR cycle – both removal and incorporation of Z and P the artificial genetic system capable to evolve. Pol: Deep Vent – 2 Z/P, Taq/Phu – 3-4 Z/P 18-mers: 2+2 Z:P pairs B-DNA dZTP ( deprotonated ) at higher pH pairs slightly with G 6 consecutive Z:P A-DNA loss of some Z, but also gain of some new Z mutants. 0,1 nm wider, but otherwise alike G:C pairs S. Benner et al., J. Am. Chem. Soc., 2011 , 133 (38), pp 15105–15112 S. Benner et al., J. Am. Chem. Soc., 2015, 137, pp 6947–6955 2 12.12.2017 Unnatural aminoacid incorporation using a noncanonical base pair (A) The coupled transcription–translation system using the nonstandard codon– anticodon interaction for the site-specific incorporation of 3-chlorotyrosine into the Ras protein.
    [Show full text]
  • DNA Before Proteins? Recent Discoveries in Nucleic Acid Catalysis Strengthen the Case
    Portland State University PDXScholar Chemistry Faculty Publications and Presentations Chemistry 1-2009 DNA Before Proteins? Recent Discoveries in Nucleic Acid Catalysis Strengthen the Case Aaron Steven Burton Portland State University Niles Lehman Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/chem_fac Part of the Biology Commons, and the Genetics Commons Let us know how access to this document benefits ou.y Citation Details Burton, A.S.; Lehman, N. (2009). DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 9:125-130. This Article is brought to you for free and open access. It has been accepted for inclusion in Chemistry Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2008.0240 Hypothesis Paper DNA Before Proteins? Recent Discoveries in Nucleic Acid Catalysis Strengthen the Case Aaron S. Burton and Niles Lehman Abstract An RNA-DNA World could arise from an all-RNA system with the development of as few as three ribozymes— a DNA-dependent RNA polymerase, an RNA-dependent DNA polymerase, and a catalyst for the production of DNA nucleotides. A significant objection to DNA preceding proteins is that RNA has not been shown to cat- alyze the production of DNA. However, RNA- and DNAzymes have been recently discovered that catalyze chemical reactions capable of forming deoxyribose, such as mixed aldol condensation of 5’-glyceryl- and 3’- glycoaldehyde-terminated DNA strands.
    [Show full text]
  • Evaluating TNA Stability Under Simulated Physiological Conditions
    Bioorganic & Medicinal Chemistry Letters 26 (2016) 2418–2421 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Evaluating TNA stability under simulated physiological conditions Michelle C. Culbertson a, Kartik W. Temburnikar a, Sujay P. Sau a,c, Jen-Yu Liao a,c, Saikat Bala a,c, ⇑ John C. Chaput a,b,c, a Biodesign Institute, Arizona State University, Tempe, AZ 85287-5301, USA b Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-5301, USA c Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA article info abstract Article history: Chemically modified oligonucleotides are routinely used as diagnostic and therapeutic agents due to their Received 12 March 2016 enhanced biological stability relative to natural DNA and RNA. Here, we examine the biological stability Revised 30 March 2016 of a-L-threofuranosyl nucleic acid (TNA), an artificial genetic polymer composed of repeating units of Accepted 31 March 2016 0 0 a-L-threofuranosyl sugars linked by 2 ,3 -phosphodiester bonds. We show that TNA remains undigested Available online 1 April 2016 after 7 days of incubation in the presence of either 50% human serum or human liver microsomes and is stable against snake venom phosphordiesterase (a highly active 30 exonuclease). We further show that Keywords: TNA will protect internal DNA residues from nuclease digestion and shield complementary RNA strands Threose nucleic acid from RNA degrading enzymes. Together, these results demonstrate that TNA is an RNA analogue with Biological stability RNA analogue high biological stability. Ó 2016 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Theranostics Molecular Beacons of Xeno-Nucleic Acid for Detecting
    Theranostics 2013, Vol. 3, Issue 6 395 Ivyspring International Publisher Theranostics 2013; 3(6):395-408. doi: 10.7150/thno.5935 Review Molecular Beacons of Xeno-Nucleic Acid for Detecting Nucleic Acid Qi Wang2, Lei Chen1, Yitao Long1, He Tian1 and Junchen Wu1, 1. Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, China. 2. College of Public Health, Nantong University, China. Corresponding author: Junchen Wu, Meilong 130, Shanghai 200237, China. Telephone: (+86) 21-6425-3674, fax: (+86) 21-6425-2258, E-mail: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.01.23; Accepted: 2013.04.10; Published: 2013.05.05 Abstract Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluoro- phores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and dis- advantages.
    [Show full text]
  • Modeling Prebiotic Catalysis with Nucleic Acid-Like Polymers and Its Implications for the Proposed RNA World*
    Pure Appl. Chem., Vol. 76, No. 12, pp. 2085–2099, 2004. © 2004 IUPAC Modeling prebiotic catalysis with nucleic acid-like polymers and its implications for the proposed RNA world* S. G. Srivatsan‡ Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016 (UP), India Abstract: The theory that RNA molecules played a pivotal role in the early evolution of life is now widely accepted. Studies related to this hypothetical “RNA world” include three major areas: the formation of precursors for the first RNA molecules, the polymerization process, and the potential of RNA to catalyze chemical and biochemical reactions. Several chemical and biochemical studies performed under simulated prebiotic conditions support the role of RNA as both genetic as well as catalytic material. However, owing to the lack of credible mechanism for de novo nucleic acid synthesis and the hydrolytic instability of RNA mole- cules, there has been some serious discussion of whether biopolymers that closely resembled nucleic acid preceded the “RNA world”. In this context, an overview of prebiotic chemistry, the role of mineral surface, and the significance of studies related to RNA-like polymers in the origin of life are presented here. INTRODUCTION Though life that exists today and in the geological record is based on DNA genomes and protein en- zymes, there is convincing evidence that hypothesizes the origin of life based on RNA [1]. This hypo- thetical primordial era is referred to as the “RNA world” [2]. The “RNA world” hypothesis assumes that all modern organisms are descendants of a prebiotic self-replicating moiety, which utilized RNA as both genetic as well as catalytic material.
    [Show full text]
  • Amplification of RNA by an RNA Polymerase Ribozyme David P
    XVIIIth Intl Conf on Origin of Life 2017 (LPI Contrib. No. 1967) 4024.pdf July 16-21, 2017 at UC San Diego, CA, USA Amplification of RNA by an RNA Polymerase Ribozyme David P. Horning1 and Gerald F. Joyce1 1Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute, La Jolla, CA 92037 * [email protected] Introduction: In all extant life, genetic information is stored in nucleic acids that are repli- cated by polymerase proteins. In the hypothesized RNA world, prior to the evolution of genet- ically-encoded proteins, ancestral organisms contained RNA genes that were replicated by an RNA polymerase ribozyme [1,2]. In an effort toward reconstructing RNA-based life in the labor- atory, in vitro evolution was used to improve dramatically the activity and generality of an RNA polymerase ribozyme by selecting variants that can synthesize functional RNA molecules from an RNA template [3]. The improved polymerase ribozyme (fig. 1A) is able to synthesize a varie- ty of complex structured RNAs, including aptamers, ribozymes, and, in low yield, even tRNA. The polymerase can also transcribe, with more modest activity, template RNA into nucleic acid analogs, including threose nucleic acid (TNA). Furthermore, the polymerase can replicate nucle- ic acids, amplifying short RNA templates by more than 10,000-fold in an RNA-catalyzed form of the polymerase chain reaction (riboPCR, fig. 1B). Thus the two prerequisites of Darwinian life — the replication of genetic information and its conversion into functional molecules — can now be accomplished with RNA in the complete absence of proteins. Currently, polymerases are un- dergoing in vitro evolution to synthesize complete functional ribozymes within minutes, with the aim of achieving fully autonomous RNA replication of the polymerase itself and other ribozymes of similar complexity.
    [Show full text]
  • Evolution of Functional Nucleic Acids in the Presence of Nonheritable Backbone Heterogeneity
    Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity Simon G. Trevinoa, Na Zhanga, Mark P. Elenkoa, Andrej Luptákb, and Jack W. Szostaka,1 aHoward Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02144; and bDepartments of Pharmaceutical Sciences, Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 Edited by Dinshaw J. Patel, Memorial Sloan-Kettering Cancer Center, New York, NY, and approved July 11, 2011 (received for review May 4, 2011) Multiple lines of evidence support the hypothesis that the early manner, from mixtures of chemically diverse monomer building evolution of life was dominated by RNA, which can both transfer blocks. information from generation to generation through replication Any genetic polymer capable of Darwinian evolution must directed by base-pairing, and carry out biochemical activities by be able to replicate and must be able to encode useful functions. folding into functional structures. To understand how life emerged Of these two properties, replication is probably more tolerant of from prebiotic chemistry we must therefore explain the steps that structural heterogeneity in the sugar-phosphate backbone of a led to the emergence of the RNA world, and in particular, the synth- nucleic acid, because the key to information transfer during esis of RNA. The generation of pools of highly pure ribonucleotides replication is the complementarity of the nucleobases, which on the early Earth seems unlikely, but the presence of alternative act as molecular recognition modules that are largely indepen- nucleotides would support the assembly of nucleic acid polymers dent of the backbone structure (8, 9).
    [Show full text]
  • Front Matter Template
    Copyright by Matthew Levy 2003 Design and Evolution of Functional Nucleic Acids by Matthew Levy, B.S., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May, 2003 For Harry, my mother and my father. Dad, now I, too, have advanced graduate degrees. Acknowledgements I would like to thank Andy and all of the members of the Ellington lab, past and present. In particular, I’d like to thank Michael Robertson, who not only first helped show me how to do science in Stanley Miller’s lab, but helped me learn molecular biology in Andy’s lab. I would also like to thank Amos Yan, Jay “Buddy” Hesselberth, Scott Knudsen, Colin “Bunny” Cox, Jeff Tabor and Kristin Thompson for all of their help and fruitful scientific conversations. In addition, I’d like to thank Dr. Kenneth A. Johnson for his assistance with kinetics. Also, a special thanks to Stanley L. Miller for first teaching me how to do research in his lab and sparking my interest in origins research. Finally, I’d like to thank all of my friends in Texas, San Diego and New York, as well as my family, especially my mother Judy, father Walter, brother Alex, stepmother Gene, stepsisters Kate and Kristie (Matt and Emma, too) and stepfather Harvey, for all of their love and support over the years. v Design and Evolution of Functional Nucleic Acids Publication No._____________ Matthew Levy, Ph.
    [Show full text]