The Assembly of Gondwanaland

Total Page:16

File Type:pdf, Size:1020Kb

Load more

bY R aphael U nrug T he assem bly of G ondw analand Scientif c results of IG C P P rQject 288: G ondw analand sutures and m obile belts (follellvallelland ;, · ‘,‘、elssellibled ill lhe 从1OP roterozoic IG C JI Project 288 (w nd lvem aland m au,一‘)、‘,,,‘//了,/‘/j,。/1八 P an A.11-ican-B rtisdiano orogem 介)How ilig breakup ‘,广 (199()一1995, extended in 1990 ) asscm N ed :、larl-e and di\ci-,,c IILIIII- he'- Of PM-ticilM lIts. Ik Ullk-d I-Cl2io)nal studies conducted ill }111 ex- 1/](夕/)1沼〔‘(,‘/ti,‘留R odinia supercontilicia. The hiller created G o nd -A m ialand SOU 山ern co n tinen ts }}e re s\ n the siscd in the G cot卜- ond 、‘1 1/1 illolioll。,iiew sYm em ‘夕'11tilospheric philes that nam ic m ap ()!( ;olldw allalalld 八、scm hk I)FOCILICCLI jOilltIN' h}r IG C P ir vithed ill Ilie,101-Inaltoti o)"N eop rolet-o-P ic m obile bell.% Pro,ject 288 W alahasc Icnel-aliojn), Ole C otincil fol- (W OSCIence, Pre- t0l-lil, SOLIth A frica (G IS and digital cartoyr}tph} ), and the B UI-CM I (IC slllllrinl} old crolotis ill G ondivanalm id. L ast G ontA valiti- R echcrches G cO1OI1M(jLleS Ct M illic[-C',, 0 1-1}Z111, FI-M ICC (pl'illtillO . III land w as a .11-op tient ol Rodinia that survived the addition to the in}甲.W hich is 山C IW IJOI- OLIICOIIIC 01' I(A P 288. the /”,、akitp alid, du,一,it,, the N vop roiero -oi( 、、,‘,.、a/.} ec,c ted pro,ject achicved im portant rem ilt、川 1-c I'i川ng the Concept of ‘,,,/、,bY I'llta lcolitt.n e l lia八 eloritialion. Ill M }st G o,ntlw a- R odinia 一[he ';llj)Cl-COlItillCllt I)I-CCUI-Sol- to (iondw ana, datim-, ]hc crc- ation of 山C P}W ihC O CCM I, M Id CIC\Clol)ill,( h\j)OthCSeS Oll C}ILISCS Of lioloild, 1/1( ‘,/,‘nin"', ‘,/th,二。‘,(calls, I)-olll w hich Poll 山e %0 despread dccrat()川、atioll 。)!old continental crust fragm ents A lO call-B ra'siliallo orogeivs w ere bot-11, Is traced to a and postoroLcnic m aom ati,,m in the Pan 八frican- 131%i,,ih,m o period ol,crustal c.vicilsioll, ri/? illg, trallspi-cssioll. OR )gc 11y Plo "' Ie s " low ards solvim-,山。G ollkk}allalalld asscillbly puzzle jiltil(c aa activitv, ond (I八、,、docum ented lerralW ('0111- w as rapid. ReLional s} nthesc,, (T ionipcitc, 1994} S11-11111), 1995 ) siL- }iolls (/000 刃0 M a ), brockeled bY R othnia a,s,}em hlv nificall(k, }1(k zlllccd ulldelsiallding the evolution of' ituportalit parts tind breakup.八/八'raloll collisioll、illvolvilig clo wli-c (,/ of, G olidw allalaild. Flic Icadci I,., rcleri-cd to the transctipt ol'an open f'Ol-LIIII ClISCLISSIOll held :I t the 8th livernational G ond}}ana Syiupo- OCCOILS, (04()-590 M a ),postelate the Rodinia bi-cakup M UM ill11、)卜:Irt l:1、111:川1:1(1〕、)w o11. 1 9 93)LInd rc%ic A,s(U uI-U0, 1992二 A e Pail A /1-icai,-B rasiliavio orogeti1v (72()一-5-50 Ala) is R ogCI 'S , 以al,1995二、oshickt, I‘)95)101- }tCCOLIIHI, OF file C%ol、厂i ll9 ,、‘/‘·万lied to illclude otll\, the colli.sioll一,-clated ideas. T his paper prescnts the nlilill I)Oilll', 01 CLIITClu \ iCIA 1, Oil G oll- tion, }hcariii,} and tectoiiic escape, and synorogetuc & A ana land a,,se m b ly as ‘){ 19 96 . R c le re nccs are m adc to rece nt JXIPCI-S l)LIhli1,lICd (ILHAW-1 the file Of lG C P P1-OjCCt -188. inaginatisill pm Idatilig the R othilia breakup . livo m odels /,‘,、】‘乃。、,,p roposed 八,,posloro,}ellic ,,,‘,;,,1‘,It‘、,,1 a l lel liplili, w ith"Sp i-cad ill G oildw allaltilld: lithosplicric 171011- F rom R odinia to G ondw ana to P angea fl e d ela inina tio n ca used In co nlilienta 八'0 11i'v o ll ill W est (joildw allalaild alld itildcl-ploling of busallic intigilla ill G oildw allakuld ori-illated LlUI-iI1L the N copro(cro/oic Pan A trican- 111-}ISili,1110 OIOLIC]IiCS (FiLLII-C I)tlM l I-C}UhCd in occan Closure and Eo.st G ond waiialan(L Lvotopic studies suggest large- M ITTW I}-Icnlcllt, collision, alld 141ti-11-111I0 of oldcr continental crust scah, addi'11011 。,/S111)(Irgent, w ater to hot ‘rust in Ihe,se fi-}ILIIIICIIIS PI-OdLICCd hy hi-cakup ()!the piccurso,I . sUPCI-COntHieut post 0roge/lu el'Clits. 刀,‘,(vs,w inb/v ot'G ondtvaiialm id R o d in ia. T he d em ise o l' R od inia and 1'0 1-111}tliO ll 01 C o nd w ana land is convenicnily clesciihed ill term s of the st-II)CI-ColltilICIA cycle. A p rocet,dcd b-N, elockin,cl, of individuol。二,tolis aild Ihe,二is SUPCIVOlItille'll I,, (IC1111C(I hy its :I SSCHIM 11111 111oh',il OFOLIelly. -1he ,,(,evidem -e (,/one collisim i betw (‘,,,M e,vi w id Ea st 6 011- hi-cakLIP P}IRCI-ll Of file pI-CCLII-SOr SUI)CICOlItHICIlt reshapes cratons for dwalialatid. Aft er die ossem b/Y of'G om ilw analand, te( the next supercontinent cycle. III a cycle the breakup Of M l OldCl- SLI11CI-CO111111CIII illid LICCICtiO)) 01:、IIC\k supel-contillclit o%,Cl-l:tp ill tillic toiiic and m aginw ic activitY ‘v h}ft ed to the accretionar.N but [lot ill "Pace. Poc}fi - m argin, and (it the sam e litne rifi ng w id calving Rodinia w it s a s sem bled by late M CS()P]-()ICI()Z()IC (13M )一!()()() 0/ tel,·‘,,,。、‘,。·(elerated tit the opposite m ar,}m ‘,厂thc M il) ol-oL'Cllics that produced tile SvcC()一N orw e,gian, G renville, Sri,,- sup erco ii t ii i e i it. 、:、、、K ibaran, N am aqua -N iilal, M aLldheim , I'd ozanibiqUe, Eastern G hats, A lbany, Frascr, Paterson-M u,}gIra\c, noith-easl A LISO'ali}、一 Y angt/.e-C alhaysia and K irim ping m obile bells (I"i"Ure 2). T he brcakup 01'LaLlrelltia I'l-0111 F aSt A ntarctica and A L IS t ra lia to create tire Pacific O cean- the first m ajor eveni ill Rodinia disinte- In tro d u ctio n grati oil一 w its dated on palcom aIgnetic dirta ill }20 M 川 low ell et al., 1993, Pow ell, and LA, 1994h). floffirian (!99 1)proposed that the H istorically. G ondw analand lias been a 化I-tilC fiCld Ot'SILICly. E m ei- hreakUp 、)!LaUl-ClIlia from R odinia initiated the supercontinent octice ol'the ne\N paradigni ol'plate tectonics brought appreciation of l-CCOllh,('Uration that reA llted ill the lorm ation ol G ondw analand. J he the cal-1v syntheses of, Suess (1985), W c-ccncr (19 15), and IJU T oit breakUp ot R odinia w as preceded by (lie form ation of rift and sag (193 7 ). th at w ere ahc ad o t th eir linic . and rev ive d interest ill G o n- hiisins, illtlaco)litillcillid m obile hells, passive filarl"ills, itird m agm atic (1\} }111;lkfl d ICC0)IISIFUCtiOlI h}tsed on inarine geophysics. T he G colog- arcs that w ere later kivolved ill tire assem bly ol' G ondw analand ical M ap of Sector,, ofJ iondw ana (de W it, 1988 ) focused oil Cl-USM I 'f 111.11, tile bl-Cakup of Rodinia and a}scm bly ol G ondw analand " ere extension preceding the M esozoic breakup of G ondw analand and partly coeval (I"i"Llre 3). (;ondw analand assem bly w il'} com plete by Initiation ()‘sedim entary hasins alonIo (lie passi\c niargins()【present e;ji-liest Palcozoic little. 'I’h CrC COLIJO IKIVC bCCll::},Cojol-icajjy Ilect- e x 一(io n d \v a n a la n d c o u lu ie n ts - Ill'-' little }NhCll LaLlICII(M \&it, still joined w ith S iberia air(] B altica h"p i,w d,、.V o l. 11), nos. / & ) 1 2 F igure I G o n d w a n alan d cra to n s a n d 乃oterozoic m ohile C a d o m ia n b e lts . A va lo n ian 夔 P ac ific M argin 赢 摹摹摹 M esoproterozoic m o bile belts A rchean 一Paleoproterozoic c ra to n s 瓢馨 N eoproterozoic m obile belts _.i}瓢 N eoproterozoic aulacogens A rc h e a n a n d P r o te ro z o ic cr a to n s : N eoproterozoic m obile belts: 14 A raguaia 2 7 K a o k o A IVIZ A m azonian 1 M a u re ta n id e s 1 5 G o ia s 2 8 D a m a ra B D K B u ndelkhand 2 B a ssa rid es 1 6 B ra silia 2 9 L u fi lia n C NG Congo 3 R o c k e lid e s 17 Param irim aulacogen 30 Kundelungu aulacogen EAG East A ntarctica-G awler 4 A n ti A tlas 1 8 A rac u a i 30aB u koban aulacogen E S N E ast Sahara- N ile 5 O ugata aulacogen 19 W est Congo 3 1 Z a m b e z i KG K alahari-Grunehogna 6 T ran s-S ah a ra n 20 Sangha aulacogen 32 G ariep M D M adagascar-Dharw ar 7 T ib e sti 2 1 T u c a va c a 3 3 S a ld an ia N A N orth A u stralian 8 G ourm a aulacogen 22 Paraguay-C ordoba 3 4 B e ard m o re R L P R io de la Plata 9 D ah o rn eid e s 23 Pam pean Ranges 35 Pinjarra S Salvador 10 N igeria 23aN orthern Patagonia 3 6 A d elaid e S F Sao Francisco 1 1 B o rb o re rn a 2 4 R ib e ira 37 Patterson- Peterm an R anges W A W est Australian 12 Sergipe-O ubanguide 2 5 R io D o c e W A F W est A frican 1 3 A N E K T 2 6 D o m F e lic ia n o w as in contact w ith the A m azon ia a nd R io d e la P lata crato n s and th e rest of G ondw analand, to form a latest N eoproterozoic superconti- G eodynam ic provinces of G ondw analand nent Pannotia (Pow ell, 1995).
Recommended publications
  • Assembly, Configuration, and Break-Up History of Rodinia

    Assembly, Configuration, and Break-Up History of Rodinia

    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
  • A History of Proterozoic Terranes in Southern South America: from Rodinia to Gondwana

    A History of Proterozoic Terranes in Southern South America: from Rodinia to Gondwana

    + MODEL GEOSCIENCE FRONTIERS -(-) (2011) 1e9 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf REVIEW A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, C.W. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologıa y Geoquımica, IGEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centro de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina c Visiting Research Associate, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologıa y Recursos Naturales CSIC, 37071 Salamanca, Spain Received 3 August 2011; accepted 8 November 2011 KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro- Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- Cratons; gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.
  • The Making and Unmaking of a Supercontinent: Rodinia Revisited

    The Making and Unmaking of a Supercontinent: Rodinia Revisited

    Tectonophysics 375 (2003) 261–288 www.elsevier.com/locate/tecto The making and unmaking of a supercontinent: Rodinia revisited Joseph G. Meerta,*, Trond H. Torsvikb a Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box 11210 Gainesville, FL 32611, USA b Academy of Sciences (VISTA), c/o Geodynamics Center, Geological Survey of Norway, Leif Eirikssons vei 39, Trondheim 7491, Norway Received 11 April 2002; received in revised form 7 January 2003; accepted 5 June 2003 Abstract During the Neoproterozoic, a supercontinent commonly referred to as Rodinia, supposedly formed at ca. 1100 Ma and broke apart at around 800–700 Ma. However, continental fits (e.g., Laurentia vs. Australia–Antarctica, Greater India vs. Australia– Antarctica, Amazonian craton [AC] vs. Laurentia, etc.) and the timing of break-up as postulated in a number of influential papers in the early–mid-1990s are at odds with palaeomagnetic data. The new data necessitate an entirely different fit of East Gondwana elements and western Gondwana and call into question the validity of SWEAT, AUSWUS models and other variants. At the same time, the geologic record indicates that Neoproterozoic and early Paleozoic rift margins surrounded Laurentia, while similar-aged collisional belts dissected Gondwana. Collectively, these geologic observations indicate the breakup of one supercontinent followed rapidly by the assembly of another smaller supercontinent (Gondwana). At issue, and what we outline in this paper, is the difficulty in determining the exact geometry of the earlier supercontinent. We discuss the various models that have been proposed and highlight key areas of contention. These include the relationships between the various ‘external’ Rodinian cratons to Laurentia (e.g., Baltica, Siberia and Amazonia), the notion of true polar wander (TPW), the lack of reliable paleomagnetic data and the enigmatic interpretations of the geologic data.
  • U-Pb Geochronologic Evidence for the Evolution of the Gondwanan Margin of the North-Central Andes

    U-Pb Geochronologic Evidence for the Evolution of the Gondwanan Margin of the North-Central Andes

    U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes David M. Chew† Urs Schaltegger Department of Mineralogy, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland Jan Košler Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway Martin J. Whitehouse Laboratory for Isotope Geology, Swedish Museum of Natural History, S-104 05 Stockholm, Sweden Marcus Gutjahr Institute for Isotope Geology and Mineral Resources, ETH-Zentrum, Clausiusstrasse 25, CH-8092 Zürich, Switzerland Richard A. Spikings Aleksandar Miškovi´c Department of Mineralogy, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland ABSTRACT zircon overgrowths from amphibolite-facies limited because they are either obscured by later schists, which reveals metamorphic events tectonic events along the convergent margin or We investigated the Neoproterozoic–early at ca. 478 and ca. 312 Ma and refutes the buried by the ubiquitous volcanic cover. Paleozoic evolution of the Gondwanan mar- previously assumed Neoproterozoic age for This problem is particularly acute in the gin of the north-central Andes by employing orogeny in the Peruvian Eastern Cordillera. north-central Andes, where Precambrian base- U-Pb zircon geochronology in the Eastern The presence of an Ordovician magmatic ment is not exposed for over 2000 km along Cordilleras of Peru and Ecuador using a and metamorphic belt in the north-central strike, from 15°S in Peru to 2°S in Colombia. combination of laser-ablation–inductively Andes demonstrates that Famatinian meta- This corresponds to the distance between the coupled plasma–mass spectrometry detrital morphism and subduction-related mag- northern extent of the Arequipa-Antofalla base- zircon analysis and dating of syn- and post- matism were continuous from Patagonia ment (Fig.
  • From Rodinia to Gondwana

    From Rodinia to Gondwana

    A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, c.w. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologia y Geoquimica, ICEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centra de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina C 'Visiting Research Associate, British Geological SUlVey, Keyworth, Nottingham NG12 SCC, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologia y Recursos Naturales CSIC, 37071 Salamanca, Spain KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro­ Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal­ Cratons; gamation that led to formation of the supercontinent Rodinia, followed by N eoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeograpbical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras 1.
  • Archean Evolution of the Southern São Francisco

    Archean Evolution of the Southern São Francisco

    ARCHEAN EVOLUTION OF THE SOUTHERN SÃO FRANCISCO CRATON (SE BRAZIL) i ii FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO Reitor Cláudia Aparecida Marliére de Lima Vice-Reitor Hermínio Arias Nalini Júnior Pró-Reitor de Pesquisa e Pós-Graduação Sérgio Francisco de Aquino ESCOLA DE MINAS Diretor Issamu Endo Vice-Diretor José Geraldo Arantes de Azevedo Brito DEPARTAMENTO DE GEOLOGIA Chefe Luis Antônio Rosa Seixas iii EVOLUÇÃO CRUSTAL E RECURSOS NATURAIS iv CONTRIBUIÇÕES ÀS CIÊNCIAS DA TERRA - VOL. 349 TESE DE DOUTORAMENTO ARCHEAN EVOLUTION OF THE SOUTHERN SÃO FRANCISCO CRATON (SE BRAZIL) Capucine Albert Orientador Dr. Cristiano de Carvalho Lana Co-orientador Dr. Federico Farina Tese apresentada ao Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais do Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial à obtenção do Título de Doutor, Área de Concentração: Tectônica, Petrogênese e Recursos Minerais OURO PRETO 2017 v vii viii Acknowledgements Many people have contributed toward the realization of this project, bringing their geological knowledge, financial or logistic support and moral encouragements, and I have every person to acknowledge and thank for their contribution, whether small or big. Thank you! Cristiano, I am indebted to you for providing me with the opportunity to do research, and for all your support throughout the years. I am particularly grateful for your enthusiasm, your trust, and your availability. Thank you for the time and effort you dedicate to your students, providing us with the opportunity to be involved in scientific discussions, and for letting us follow our own research interests and ideas.
  • Back Matter (PDF)

    Back Matter (PDF)

    Index Page numbers in italic denote figures. Page numbers in bold denote tables. Accra Plains Migmatite, correlation with Me´dio Coreau´ Bafia Group 86 domain 102–103, 114 Bahia–Gabon continental bridge 153, 154 Adamastor ocean Baixo Araguaia Supergroup 174, 299 closure 260, 265, 269, 270, 271, 271, 273 geochronology 184, 189, 190, 191 subduction 229, 231 Baltica Adamawa fault 92 palaeogeography 13–16, 14, 15, 17,22–23 Adamawa–Yade´ domain 85, 85, 87, 88,90–91 palaeomagnetic poles 10, 11 Afagados do Ingrazeira fault 72 Bambui Group 165, 201, 206 A´ gua Clara domain 241, 242 Bandeirinha Formation 36, 36, 37 A´ guas Belas–Caninde´ suite 80, 81 Bangweulu block 33, 43–45 Akanyaru Supergroup 33, 41–43, 45 Baoule´ –Mossi domain 142–144 Albian gap 379, 382, 384, 392 Barro Alto complex 204 Ale´m Paraı´ba shear zone 222 basalt, Brazilian margin 373 Algodo˜es Unit 53 basins Alto Moxoto´ terrane 72, 77, 92 sag Alto Pajeu´ terrane 72, 73, 77, 78, 92 Espirito Santo Basin 379 Amazonia Sa˜o Francisco craton 33, 34, 35–36, 39 palaeogeography 13–16, 14, 15, 16, 17, 21, 22–23 salt, Brazilian margin 366–370, 367, 375 palaeomagnetic poles 12,13 sedimentary Amazonian craton 102 Borborema Province 56 geochronology 177, 189, 191 Garupi Belt 141 Andrelaˆndia Group 164, 202, 205, 217 Parana´ –Cape–Karoo 319–337 Angola craton 4, 5, 223, 224, 225–226 rift, Brazilian margin, uplifted flanks 383–387 correlation with Cabo Frio terrane 292 Sa˜o Francisco–Congo craton 33–46 Apiaı´ terrane 214, 218, 221, 222–223, 229 Sa˜o Luı´s craton 140, 141 Apparent Polar Wander Path
  • Vladimircm TESE.Pdf

    Vladimircm TESE.Pdf

    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS-GRADUAÇÃO EM GEODINÂMICA E GEOFÍSICA TESE DE DOUTORADO Evolução Geodinâmica e Condicionamento Estrutural dos Terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. Autor: Vladimir Cruz de Medeiros Tese n0 09/PPGG ORIENTADOR: Prof. Dr. Emanuel Ferraz Jardim de Sá – PPGG/UFRN CO-ORIENTADORES Prof. Dr. Venerando Eustáquio Amaro – PPGG/UFRN Prof. Dr. Fernando César Alves da Silva – PPGG/UFRN Natal - RN, Setembro de 2004 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS-GRADUAÇÃO EM GEODINÂMICA E GEOFÍSICA TESE DE DOUTORADO Evolução Geodinâmica e Condicionamento Estrutural dos Terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. Autor: Vladimir Cruz de Medeiros Tese de doutorado apresentada em 30 de Setembro de 2004, para obtenção do título de Doutor em Geodinâmica pelo Programa de Pós-Graduação em Geodinâmica e Geofísica da UFRN. Comissão Examinadora: PROF. Dr. Emanuel Ferraz Jardim de Sá (DG-PPGG-UFRN-Orientador) PROF. Dr. Venerando Eustáquio Amaro (DG-PPGG-UFRN-Co-Orientador) PROF. Dr. Walter Eugênio de Medeiros (DFTE-PPGG-UFRN) PROF. Dr. Elton Luiz Dantas (DG-UnB) Dr. Edilton José dos Santos (CPRM-Serviço Geológico do Brasil) Natal - RN, Setembro de 2004. - DEDICATÓRIA - Aos familiares Marília O. Cruz (in memorian). Silvino S. Medeiros (in memorian). Maria E. Medeiros (in memorian). Francisco das Chagas. Maria das Graças Souza. iii - AGRADECIMENTOS - A iniciativa de realizar e o desenvolvimento do presente trabalho contou com a colaboração e incentivo de várias pessoas e instituições, as quais queremos registrar os nossos agradecimentos.
  • An Approach to the Brasiliano-Pan African Cycle and Orogenic Collage

    An Approach to the Brasiliano-Pan African Cycle and Orogenic Collage

    155 by Benjamim Bley de Brito Neves1, Mário da Costa Campos Neto1, and Reinhardt Adolfo Fuck2 From Rodinia to Western Gondwana: An approach to the Brasiliano-Pan African Cycle and orogenic collage 1- Instituto de Geociências - Universidade de São Paulo. S. Paulo-SP. 2- Instítuto de Geociências - Universidade de Brasílía. Brasílía-DF. The basement of the South American platform displays east), Tocantins (Central-eastern, part of the Central- the lithostructural and tectonic records of three major western), Pampean (Central-southwestern) and Man- orogenic collages: Middle Paleoproterozoic (or tiqueira (East-southeast). Transamazonian), Late Mesoproterozoic/Early Neopro- terozoic and Late Neoproterozoic/Cambrian, the Brasil- Introduction iano-Pan African collage. The first two collages have their records in the basement of the Syn-Brasiliano cra- The history of the geologic evolution of the South American conti- tons and Brasiliano Fold Belts. nent from the Neoproterozoic to the early Cambrian is recording all The development of the Brasiliano-Pan African the steps of the development of a complete and wide tectonic cycle, collage started in Early Neoproterozoic times, with the in terms of J.T. Wilson. This means, from the fission/disarticulation of a former Late Mesoproterozoic Supercontinent (Rodinia) – up to first events of breakup of the Rodinia Supercontinent, the further fusion/agglutination of a newer supercontinent — West- and it has been characterized by diachrony since their ern Gondwana (Pannotia). early beginnings. The processes of break up and fission For the two major tectonic phenomena then developed (fission and subsequent fusion) it is necessary to remark, since now, the took place in different time intervals (ca.
  • From Rodinia to Gondwana

    From Rodinia to Gondwana

    GEOSCIENCE FRONTIERS 3(2) (2012) 137e145 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf GSF REVIEW A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, C.W. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologıa y Geoquımica, IGEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centro de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina c Visiting Research Associate, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologıa y Recursos Naturales CSIC, 37071 Salamanca, Spain Received 3 August 2011; accepted 8 November 2011 Available online 3 December 2011 KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro- Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- Cratons; gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru.
  • Palaeozoic Amalgamation of Central Europe: an Introduction and Synthesis of New Results from Recent Geological and Geophysical Investigations

    Palaeozoic Amalgamation of Central Europe: an Introduction and Synthesis of New Results from Recent Geological and Geophysical Investigations

    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations J. A. WINCHESTER 1, T. C. PHARAOH 2 & J. VERNIERS 3 1School of Earth Sciences and Geography, Keele University, Staffs ST5 5BG, UK; j. a. winchester@esci, keele.ac, uk 2British Geological Survey, Kingsley Dunham Centre, Keyworth, Notts NG12 5GG, UK 3Laboratorium voor Palaontologie, Krijgslaan 281/$8, B 9000, Gent, Belgium Abstract: Multidisciplinary studies undertaken within the EU-funded PACE Network have permitted a new 3-D reassessment of the relationships between the principal crustal blocks abutting Baltica along the Trans-European Suture Zone (TESZ). The simplest model indicates that accretion was in three stages: end-Cambrian accretion of the Bruno- Silesian, Lysogdry and Matopolska terranes; late Ordovician accretion of Avalonia, and early Carboniferous accretion of the Armorican Terrane Assemblage (ATA), which had coalesced during Late Devonian - Early Carboniferous time. All these accreted blocks contain similar Neoproterozoic basement indicating a peri-Gondwanan origin: Palaeozoic plume-influenced metabasite geochemistry in the Bohemian Massif in turn may explain their progressive separation from Gondwana before their accretion to Baltica, although separation of the Bruno-Silesian and related blocks from Baltica during the Cambrian is contentious. Inherited ages from both the Bruno-Silesian crustal block and Avalonia contain a 1.5 Ga 'Rondonian' component arguing for proximity to the Amazonian craton at the end of the Neoproterozoic: such a component is absent from Armorican terranes, which suggests that they have closer affinities with the West African craton.
  • Archean Crust and Metallogenic Zones in the Amazonian Craton Sensed by Satellite Gravity Data Received: 3 September 2018 J

    Archean Crust and Metallogenic Zones in the Amazonian Craton Sensed by Satellite Gravity Data Received: 3 September 2018 J

    www.nature.com/scientificreports OPEN Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data Received: 3 September 2018 J. G. Motta 1, C. R. de SOUZA FILHO1, E. J. M. Carranza 2 & C. Braitenberg 3 Accepted: 17 January 2019 The formation of ore deposits has been extensively studied from a shallow crust perspective. In Published: xx xx xxxx contrast, the association of mineral systems with deep crustal structure of their host terranes remains relatively undisclosed, and there is evidence that processes throughout the lithosphere are coupled for their evolution. The current debate centers on the control of the regional deep crustal architecture in focusing and transferring fuids between geochemical reservoirs. Defning such architecture is not unequivocal, and involves combining indirect information in order to constrain its physical properties and evolution. Herein, based on evidence from satellite gravity, constrained by airborne potential feld data (gravity and magnetics), we provide an example on how the lithosphere geometry controlled the location of copper and gold systems in the world-class Archean Carajás Mineral Province (Amazonian Craton, South America). Validation with information from passive seismic (wave speeds, crustal and lithospheric thickness) and geochronologic data (model, crystallization ages, and Neodymium isotope ratio determinations) portrays a signifcantly enlarged, poly-phase, Archean crust that exerted geometric control on the location of the mineral systems within and adjacent to the province during tectonic quiescence and switches. This new geologic scenario impacts the understanding of the Amazonian Craton. Synergy between multi-source data, as experimented here, can provide robust models efciently and, conceivably, help to unveil similar terrains elsewhere.