How Did Freshwater Gastropods Respond to the Quaternary Climate Change in Europe?

Total Page:16

File Type:pdf, Size:1020Kb

How Did Freshwater Gastropods Respond to the Quaternary Climate Change in Europe? Quaternary Science Reviews 149 (2016) 269e278 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? * Elisavet Georgopoulou a, b, , Thomas A. Neubauer a, Giovanni Strona c, Andreas Kroh a, Oleg Mandic a, Mathias Harzhauser a a Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria b Institute for Earth Sciences, University of Graz, Heinrichstraße 26, 8010 Graz, Austria c European Commission, Joint Research Centre, Institute for Environment and Sustainability, Forest Resources and Climate Unit, 21027 Ispra, Italy article info abstract Article history: The well documented fossil record of European Quaternary freshwater gastropods offers a unique Received 19 October 2015 resource for continental-scale biogeographical analyses. Here, we assembled a dataset including 338 Received in revised form freshwater gastropod taxa from 1058 localities across Europe, which we used to explore how freshwater 14 July 2016 gastropod communities varied in space and time across six distinct time intervals of the Quaternary, i.e. Accepted 27 July 2016 Gelasian, Calabrian, Middle Pleistocene, Last Interglacial, Last Glacial and Holocene. We took into Available online 10 August 2016 consideration both species richness and qualitative structural patterns, comparing turnover rates be- tween time intervals and examining variations in community nestedness-segregation patterns. Species Keywords: fi Pleistocene richness differed signi cantly between time intervals. The Early Pleistocene showed the highest di- Holocene versity, likely because of the contribution of long-lived aquatic systems like the lakes Bresse and Tiberino Species richness that promoted speciation and endemism. The rich Middle to Late Pleistocene and Holocene assemblages Species turnover were mostly linked to fluvial and/or lacustrine systems with short temporal durations. We identified a Overlap-segregation major turnover event at the Plio-Pleistocene boundary, related to the demise of long-lived lakes and of Range-through approach their rich, endemic faunas at the end of the Pliocene. In the subsequent intervals, little or no turnover Geographical ranges was observed. We also observed a pattern of high segregation in Early Pleistocene communities, asso- ciated with the abundance of endemic species with small distribution ranges, and reflecting the pro- vincial character of the aquatic freshwater systems at that time. This structured pattern disintegrated gradually towards the Middle Pleistocene and remained unstructured up to present. In particular, spatial patterns of community nestedness-segregation in the Last Interglacial and Holocene suggest a random recolonization of freshwater habitats mostly by generalist species following deglaciation. © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction tectonic activity (e.g. Antonioli et al., 2009; Gabris and Nador, 2007; Stocchi et al., 2005; Zagwijn, 1989). Changes in species diversity The Quaternary Period (2.588e0 Ma; Gibbard et al., 2010), patterns during the Quaternary are usually affiliated with the which can be considered short in a geological perspective, is recurrent glaciations (e.g. Colwell and Rangel, 2010; Dynesius and characterised by successive glacial episodes and distinctly lower Jansson, 2000; Hewitt, 1999; Jansson and Dynesius, 2002), and temperatures compared to the preceding Neogene Period (Lisiecki particularly with the last Ice Age (e.g. Hewitt, 1999, 2000). Qua- and Raymo, 2005). During this time, Europe attained its present ternary ice house conditions affected different animal groups in shape, with extensive changes in shorelines and inland waters different ways as shown, for example, by European insect faunas, occurring mainly because of glacio-isostatic movements and which do not show high extinction rates during the Quaternary, but instead display shifts in their geographical ranges (Coope, 1994). Similarly, changes in species geographical ranges (which, in turn, affected local species richness and composition) have been recor- * Corresponding author. Geological-Paleontological Department, Natural History ded for the Late Pleistocene and Holocene land snail faunas of Museum Vienna, Burgring 7, 1010 Vienna, Austria. north-western Europe (Limondin-Lozouet and Preece, 2014). As E-mail addresses: [email protected], georgelisavet@yahoo. gr (E. Georgopoulou). shown by Neubauer et al. (2015b), the freshwater gastropods of http://dx.doi.org/10.1016/j.quascirev.2016.07.034 0277-3791/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 270 E. Georgopoulou et al. / Quaternary Science Reviews 149 (2016) 269e278 Europe experienced a major turnover at the Plio-Pleistocene divisions were chosen to fit the formal Quaternary subdivisions boundary, and a severe decline in their diversity. The main expla- proposed by Gibbard et al. (2010), hence facilitating comparability, nations of this event have been identified in deteriorating climate, and pinpointing the main glacial event of the Late Pleistocene (i.e. and in the disappearance of long-lived lakes (Neubauer et al., the Last Glacial). All localities extracted from the literature were 2015b). assigned to one of the six TIs based on their stratigraphic age, as While, the distribution of freshwater gastropods during the updated and attributed by Georgopoulou et al. (2015) (see Quaternary is reasonably documented at a regional scale (e.g. Supplementary Table 2). Localities with age ranges crossing a TI's Alexandrowicz, 1999; Esu and Girotti, 1975; Kennard and age boundary were excluded from the dataset except for those Woodward, 1917, 1922; Lozek, 1964; Mania, 1973; Sanko, 2007; where 90% or more of the interval fell within one of the two TIs. Settepassi and Verdel, 1965), a detailed breakdown of trends in Localities with too coarse stratigraphic attributions (e.g. “Early freshwater gastropod biodiversity and biogeography is entirely Pleistocene” or “Late Glacial to Holocene”) were excluded from the missing on a larger scale. Beyond that, a limited number of studies analyses. deal with regional biogeographical patterns, time intervals or taxa, focusing mostly on the terrestrial gastropods (e.g. Limondin- 2.2. Species richness Lozouet and Preece, 2014; Meijer and Preece, 1996). In contrast, the biogeographical relationships of Neogene lacustrine gastropods We examined patterns of species richness across the six TIs. on a pan-European scale have recently been investigated Because of the incomplete fossil record and heterogeneity in (Harzhauser and Mandic, 2008; Neubauer et al., 2015a). These sampling effort, localities included in the dataset are unevenly works identified a trend towards increasing provincialism during distributed and geographically clustered (Fig. 1). Thus, in all TIs, the Neogene, resulting from the formation of large, long-lived lakes information on species distribution is well available in some areas, with highly endemic faunas. By the onset of the Pleistocene, while it is sparse or lacking in others. To cope with the potential however, nearly all of these major hotspots had vanished. confounding effect of this pattern, we created 100 Â 100 km equal- A recent investigation of modern gastropod distribution in Eu- area grid cells in ArcGIS 10 (Esri Inc., 1999e2010) in Behrmann ropean lakes indicates that lacustrine snails still carry the imprint of projection. To ensure that species richness was not overestimated the last Ice Age (Georgopoulou et al., 2016). Here we aim at in areas represented in the dataset by numerous localities, for each unravelling the trends in diversity and spatial structure of the Eu- TI, we calculated the number of species within each grid cell ropean freshwater gastropod fauna throughout the Pleistocene and including at least one locality. Given that the selected grid size Holocene, i.e. the last 2.6 Ma, in order to provide the missing links reflects the explicit character of species distribution records and between the well-resolved patterns of Neogene and modern maintains their spatial accuracy, this procedure should ensure that freshwater gastropod biogeography. For this we compiled a sampling errors related to variation in area sizes are avoided (Kreft comprehensive dataset including available information on the oc- and Jetz, 2010). Average species richness in each TI was defined as currences of European Quaternary freshwater gastropods. We used the quotient of the total number of species divided by the number this dataset to explore how species richness and composition of grid cells with occurrence data. Differences in average species changed throughout six different time intervals, providing the first, richness between TIs were investigated using ANOVA with a detailed biogeographical study of Quaternary freshwater snails at a Dunnett-Tukey-Kramer pairwise multiple comparison post hoc test continental scale. adjusted for unequal variances and sample sizes (see Lau, 2013)or, as in our case, for unequal number of grid cells with occurrence 2. Methods data. In order to explore potential biases related to the uneven spatial 2.1. Taxonomic evaluation and temporal subdivision structure of the dataset,
Recommended publications
  • Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation
    land Article Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation Antonio Martínez-Graña 1,* , Paulo Legoinha 2 , José Luis Goy 1, José Angel González-Delgado 1, Ildefonso Armenteros 1, Cristino Dabrio 3 and Caridad Zazo 4 1 Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.G.); [email protected] (J.A.G.-D.); [email protected] (I.A.) 2 GeoBioTec, Department of Earth Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516 Almada, Portugal; [email protected] 3 Department of Stratigraphy, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] 4 Department of Geology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923294496 Abstract: A 3D virtual geological route on Digital Earth of the geological-geomorphological and paleontological heritage in the Algarve (Portugal) is presented, assessing the geological heritage of nine representative geosites. Eighteen quantitative parameters are used, weighing the scientific, didactic and cultural tourist interest of each site. A virtual route has been created in Google Earth, with overlaid georeferenced cartographies, as a field guide for students to participate and improve their learning. This free application allows loading thematic georeferenced information that has Citation: Martínez-Graña, A.; previously been evaluated by means of a series of parameters for identifying the importance and Legoinha, P.; Goy, J.L.; interest of a geosite (scientific, educational and/or tourist). The virtual route allows travelling from González-Delgado, J.A.; Armenteros, one geosite to another, interacting in real time from portable devices (e.g., smartphone and tablets), I.; Dabrio, C.; Zazo, C.
    [Show full text]
  • Hofman Et Al.Indd
    JOURNAL OF CONCHOLOGY (2019), VOL.43, NO.4 407 SARAJANA RADOMAN, 1975 (CAENOGASTROPODA: TRUNCATELLOIDEA): PREMATURE INVALIDATION OF A GENUS 1 2 3 4 5 SEBASTIAN HOFMAN , ARTUR OSIKOWSKI , ALEKSANDRA RYSIEWSKA , JOZEF GREGO , PETER GLÖER , 6 3 DEJAN DMITROVIC´ , ANDRZEJ FALNIOWSKI 1Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30–387 Kraków, Poland 2Department of Animal Anatomy, Institute of Veterinary Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30–059 Kraków, Poland 3Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30–387 Kraków, Poland (e- mail: [email protected]) 4Horná Micˇ iná 219, 97401 Banská Bystrica, Slovakia 5Biodiversity Research Laboratory, Schulstr. 3, D 25491 Hetlingen, Germany 6University of Banja Luka, Faculty of Natural Sciences and Mathematics, Department of Biology and Department of Ecology and Environment Protection, Mladena Stojanovic´a 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina Abstract Sarajana apfelbecki (Brancsik, 1888) was assigned by Radoman to the monotypic genus, closely related to Belgrandiella Wagner, 1927. Later the distinctness of the genus Sarajana was questioned, and S. apfelbecki classified within the genus Belgrandiella. Our study on Sarajana from five localities in Bosnia and Herzegovina including Vrelo Bosne (type locality of the Sarajana apfelbecki) confirms that the morphology of the characteristic penis, as well as the female reproductive organs, with an exception of the presence of small, vestigial proximal seminal receptacle, overlooked by Radoman contradict a close relationships with Belgrandiella. Two molecular markers: mitochondrial cytochrome c oxidase subunit I (COI) and nuclear histone 3 (H3) were used to infer phylogeny: Sarajana was placed within the Hydrobiidae, Sadlerianinae, but far from Belgrandiella, with Graecoarganiella Falniowski et Szarowska, 2011 as a sister taxon.
    [Show full text]
  • Palaeoenvironment and Dating of the Early Acheulean
    Quaternary Science Reviews 149 (2016) 338e371 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Palaeoenvironment and dating of the Early Acheulean localities from the Somme River basin (Northern France): New discoveries from the High Terrace at Abbeville-Carriere Carpentier * Pierre Antoine a, Marie-Hel ene Moncel b, , Nicole Limondin-Lozouet a, Jean-Luc Locht c, d, Jean-Jacques Bahain b, Davinia Moreno e, Pierre Voinchet b, Patrick Auguste f, Emmanuelle Stoetzel g, Julie Dabkowski a, Silvia M. Bello h, Simon A. Parfitt h, i, Olivier Tombret a, Bruce Hardy j a Laboratoire de Geographie Physique, Environnements Quaternaires et Actuels, UMR 8591 CNRS-Univ, Paris 1-UPEC, 1 Pl. A. Briand, 92 195 Meudon, France b UMR 7194 CNRS Histoire Naturelle de l'Homme Prehistorique Departement de Prehistoire, Museum National d'Histoire Naturelle, Sorbonne Universites, 1 Rue R. Panhard, 75 013 Paris, France c INRAP, Nord-Picardie, 518, Rue Saint-Fuscien, 80 000 Amiens, France d UMR CNRS UMR 8591 CNRS-Univ, Paris 1-UPEC, 1 Pl. A. Briand, 92 195 Meudon, Meudon, France e Centro Nacional de Investigacion sobre la Evolucion Humana (CENIEH), Paseo Sierra de Atapuerca, 3, 09001 Burgos, Spain f UMR 8198 Evo-Eco-Paleo, CNRS, Universite de Lille, Sciences et Technologies, Batiment^ SN 5, 59655 Villeneuve d'Ascq Cedex, France g Histoire Naturelle de l'Homme Prehistorique (HNHP, UMR 7194), Sorbonne Universites, Museum National d'Histoire Naturelle, Departement de Prehistoire, CNRS, Musee de l'Homme,
    [Show full text]
  • New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610)
    Journal of Systematic Palaeontology 6 (1): 101–117 Issued 22 February 2008 doi:10.1017/S1477201907002167 Printed in the United Kingdom C The Natural History Museum New dinoflagellate cyst and acritarch taxa from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site 610) Stijn De Schepper∗ Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom Martin J. Head† Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada SYNOPSIS A palynological study of Pliocene and Pleistocene deposits from DSDP Hole 610A in the eastern North Atlantic has revealed the presence of several new organic-walled dinoflagellate cyst taxa. Impagidinium cantabrigiense sp. nov. first appeared in the latest Pliocene, within an inter- val characterised by a paucity of new dinoflagellate cyst species. Operculodinium? eirikianum var. crebrum var. nov. is mostly restricted to a narrow interval near the Mammoth Subchron within the Plio- cene (Piacenzian Stage) and may be a morphological adaptation to the changing climate at that time. An unusual morphotype of Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 characterised by a perforated cyst wall is also documented. In addition, the stratigraphic utility of small acritarchs in the late Cenozoic of the northern North Atlantic region is emphasised and three stratigraphically restricted acritarchs Cymatiosphaera latisepta sp. nov., Lavradosphaera crista gen. et sp. nov.
    [Show full text]
  • Folia Malacologica
    FOLIA Folia Malacol. 23(4): 263–271 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, December 2015 http://dx.doi.org/10.12657/folmal.023.022 TANOUSIA ZRMANJAE (BRUSINA, 1866) (CAENOGASTROPODA: TRUNCATELLOIDEA: HYDROBIIDAE): A LIVING FOSSIL Luboš BERAN1, SEBASTIAN HOFMAN2, ANDRZEJ FALNIOWSKI3* 1Nature Conservation Agency of the Czech Republic, Regional Office Kokořínsko – Máchův kraj Protected Landscape Area Administration, Česká 149, CZ 276 01 Mělník, Czech Republic 2Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30- 387 Cracow, Poland 3Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]) * corresponding author ABSTRACT: A living population of Tanousia zrmanjae (Brusina, 1866) was found in the mid section of the Zrmanja River in Croatia. The species, found only in the freshwater part of the river, had been regarded as possibly extinct. A few collected specimens were used for this study. Morphological data confirm the previous descriptions and drawings while molecular data place Tanousia within the family Hydrobiidae, subfamily Sadlerianinae Szarowska, 2006. Two different sister-clade relationships were inferred from two molecular markers. Fossil Tanousia, represented probably by several species, are known from interglacial deposits of the late Early Pleistocene to the early Middle Pleistocene
    [Show full text]
  • The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
    82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Caenogastropoda: Truncatelloidea)
    Folia Malacol. 27(1): 61–70 https://doi.org/10.12657/folmal.027.005 MONOPHYLY OF THE MOITESSIERIIDAE BOURGUIGNAT, 1863 (CAENOGASTROPODA: TRUNCATELLOIDEA) ANDRZEJ FALNIOWSKI1*, Simona Prevorčnik2, Teo Delić2, ROMAN ALTHER3,4, Florian alTermaTT3,4, SEBASTIAN HOFMAN5 1Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]); https://orcid.org/0000-0002-3899-6857 2Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; TD https://orcid.org/0000-0003-4378-5269 3Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland; RA https://orcid.org/0000-0001-7582-3966, FA https://orcid.org/0000-0002-4831-6958 4Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland 5Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland; https://orcid.org/0000-0001-6044-3055 *corresponding author ABSTRACT: The family Moitessieriidae is poorly known, as its members, inhabiting exclusively subterranean waters, are often known only from few minute, empty shells. Molecular studies on their relationships confirmed the distinctness of this family. Their monophyly, however, remained doubtful, since the Moitessieriidae did not form a distinct clade in the phylogenetic tree based on the most commonly applied mitochondrial cytochrome oxidase subunit I (COI), and the representative of the family Cochliopidae occupied a position among the moitessieriid clades. In the present paper two new nuclear loci, namely histone H3 gene and ribosomal internal transcribed spacer ITS2, have been applied to resolve the status of the Moitessieriidae.
    [Show full text]
  • Caenogastropoda: Hydrobiidae) in the Caucasus
    Folia Malacol. 25(4): 237–247 https://doi.org/10.12657/folmal.025.025 AGRAFIA SZAROWSKA ET FALNIOWSKI, 2011 (CAENOGASTROPODA: HYDROBIIDAE) IN THE CAUCASUS JOZEF GREGO1, SEBASTIAN HOFMAN2, LEVAN MUMLADZE3, ANDRZEJ FALNIOWSKI4* 1Horná Mičiná 219, 97401 Banská Bystrica, Slovakia 2Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Cracow, Poland 3Institute of Zoology Ilia State University, Tbilisi, Georgia 4Department of Malacology, Institute of Zoology, Jagiellonian University, Cracow, Poland (e-mail: [email protected]) *corresponding author ABSTRACT: Freshwater gastropods of the Caucasus are poorly known. A few minute Belgrandiella-like gastropods were found in three springs in Georgia. Molecular markers: mitochondrial cytochrome oxidase subunit I (COI) and nuclear histone (H3) were used to infer their phylogenetic relationships. The phylogenetic trees placed them most closely to Agrafia from continental Greece. The p-distances indicated that two species occurred in the three localities. Two specimens from Andros Island (Greece) were also assigned to the genus Agrafia. The p-distances between the four taxa, most probably each representing a distinct species, were within the range of 0.026–0.043 for H3, and 0.089–0.118 for COI. KEY WORDS: spring snail, DNA, Georgia, Andros, phylogeny INTRODUCTION The freshwater gastropods of Georgia, as well as Graziana Radoman, 1975, Pontobelgrandiella Radoman, those of all the Caucasus, are still poorly studied; this 1973, and Alzoniella Giusti et Bodon, 1984. They are concerns especially the minute representatives of the morphologically distinguishable but only slightly Truncatelloidea. About ten species inhabiting karst different, and molecularly represent not closely re- springs and caves have been found so far (SHADIN lated lineages.
    [Show full text]
  • (Gastropoda) with a Rhipidoglossate Radula
    Org Divers Evol (2011) 11:201–236 DOI 10.1007/s13127-011-0048-0 ORIGINAL ARTICLE Interactive 3D anatomy and affinities of the Hyalogyrinidae, basal Heterobranchia (Gastropoda) with a rhipidoglossate radula Gerhard Haszprunar & Erika Speimann & Andreas Hawe & Martin Heß Received: 25 January 2011 /Accepted: 26 May 2011 /Published online: 19 June 2011 # Gesellschaft für Biologische Systematik 2011 Abstract Whereas Hyalogyrina Marshall, 1988 was already on the rhipidoglossate, i.e. the ‘archaeogastropod’, originally considered a skeneid vetigastropod, the family level of evolution. Ectobranchia are considered the first Hyalogyrinidae Warén & Bouchet, 1993 has later been extant offshoot of the Heterobranchia; implications for the classified as basal Heterobranchia despite their rhipidoglossate stem species of the latter are outlined. radula. In order to evaluate this placement and to shed more light on the origin of all higher Gastropoda, we investigated Keywords Gastropoda . Ectobranchia . Hyalogyrinidae . five representatives of all three nominal hyalogyrinid genera Interactive 3D anatomy. Systematics . Phylogeny. by means of semithin serial sectioning and computer-aided Heterobranchia 3D reconstruction of the respective anatomy, which we present in an interactive way. In general the morphological features (shell, external morphology, anatomy) fully confirm Introduction the placement of Hyalogyrinidae in the Heterobranchia, but in particular the conditions of the genital system vary During the last 25 years major progress has been made in substantially within the family. The ectobranch gill of our understanding of the origin of the higher gastropods, Hyalogyrinidae is shared with Valvatidae, Cornirostridae, i.e. the allogastropod, opisthobranch and pulmonate taxa, the and Xylodisculidae; consequently all these families are latter two of which are commonly united as Euthyneura.
    [Show full text]
  • European Red List of Non-Marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert
    European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission. This publication has been prepared by IUCN (International Union for Conservation of Nature) and the Natural History of Bern, Switzerland. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the Natural History Museum of Bern or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the Natural History Museum of Bern or the European Commission. Citation: Cuttelod, A., Seddon, M. and Neubert, E. 2011. European Red List of Non-marine Molluscs. Luxembourg: Publications Office of the European Union. Design & Layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: The rare “Hélice catalorzu” Tacheocampylaea acropachia acropachia is endemic to the southern half of Corsica and is considered as Endangered. Its populations are very scattered and poor in individuals. This picture was taken in the Forêt de Muracciole in Central Corsica, an occurrence which was known since the end of the 19th century, but was completely destroyed by a heavy man-made forest fire in 2000.
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]