Reactions Between Sodium and Various Carbon Bearing

Total Page:16

File Type:pdf, Size:1020Kb

Reactions Between Sodium and Various Carbon Bearing REACTIONS BETWEEN SODIUM AND VARIOUS A number of investigations have found that lamellar compounds are formed CARBON BEARING COMPOUNDS by the reaction of the heavy alkali metals, potassium, rubidium and caesium 13 with graphite, but there have been doubts about whether lithium and sodium can do so. Dzurus et al(3) on the basis of calculated energies of formation A.C. RAINE, A.W. THORLEY have indicated that neither of these elements should form concentrated lamellar compounds with graphite. Similar considerations for dilute UKAEA, Risley, Warrington, Cheshire, lamellar compounds show that a compound of concentration stage 5 or 6 United Kingdom should be stable. (The concentration stage is defined as the ratio of carbon layers to reactant layers.) Asher and Wilson (4) have prepared a 1. INTRODUCTION compound containing one sodium atom in approximately sixty-four carbon atoms, which X-ray analysis indicates is an eighth stage compound. The presence of carbon bearing materials in liquid sodium is undesirable Dzurus et al(3)were unable to prepare this compound by reaction between because of their ability to carburise stainless steel components. It ultra pure sodium and graphite, and were only able to make a similar has been demonstrated for example that carbon taken up by stainless (but not identical) compound in the presence of contaminants such as water, steels can affect their mechanical properties and that thinner sectioned hydrogen or oxygen. It is not clear whether these impurities act merely as material such as fuel cladding and the tubing of intermediate heat catalysts, or actually enter into ternary compound formations. exchanger may be more sensitive to such effects. (SEE REP 1) Asher has reached the following conclusions on the compatibility of Generally speaking, there are a number of potential carbon sources in sodium and graphite. Initially where sodium is brought into contact with reactor systems. Some of the sources such as the graphite in neutron graphite between 200°C and 300°C, the receding contact angle is greater than shield rods, boron carbide in control rods and carbide fuels are part of 90°. The sodium and graphite (and oxygen?) react when in contact, with a the reactor designs while others such as oil in mechanical pumps and speed depending on the temperature, and there is a slow diffusion of •coupling-fluids' used to inspect plant components are associated with the the sodium along with interlayer gaps into the graphite lattice. The respective operation and inspection of the plant. < interaction will result in a local decrease in contact angle leading to progressive penetration of the pores, and this brings about chemical In this paper it is intended to discuss in general terms the way these interaction within the body of the material. This interaction is various compounds behave in liquid sodium and to assess what effect their accompanied by dilation, and since the penetration is non uniform, it gives presence will have on the materials of construction in fast reactor rise to stress and possible disruption. systems. The paper also reviews the chemistry of the environment in relation to the types of carburising species which may exist in sodium Ad hoc experiments have been carried out at RNL in order to try and get a systems. rough idea of what factors are involved in the behaviour of carbon in sodium loops. In the first experiment, spectrographically pure graphite rods were exposed to sodium at 600 C in a stainless steel dispenser (5 U pore 2. CftRBON IN AS-RECEIVED SODIUM - SODIUM MANUFACTURE size) for three days. Sampling of the sodium after this period indicated no increment of carbon level in the sodium which remained at about 1 ppm. Commercial sodium is manufactured by the Down's process, in which fused sodium chloride is electrolysed, using graphite electrodes. As a result Direct additions of graphite particles and of carbon black (particle size of erosion and to a lesser extent dissolution of the graphite, carbon 0.05 microns) have also been made on to the comparatively static sodium contamination of the sodium is inevitable. Figures of 30ppm carbon in surface in the specimen well of the loops. The carbon black disappeared as-received sodium are quoted in the Liquid Metals Handbook. The experi- quite rapidly at 400 c, while the graphite particles remained on the ence at RNL suggests that settlement in a dump tank followed by filtration surface of the liquid metal for 5 hours at this temperature without disap- through a stainless steel sinter, with a pore size of 5-10 ym, will reduce pearing. The temperature was then raised to 6O0°C for a period of 24 the level to 1-2 ppm carbon in loop sodium. Providing that this procedure hours after which all the graphite had disappeared. Is followed .in PFR and contamination from other carbon sources in the reactor is avoided the resulting conditions should be satisfactory. Subsequent analysis of the sodium showed a level of about 30 ppm carbon in the carbon black case and about 2 ppm in the graphite case. After a further 24 hours the carbon levels, by analysis, were VLppm. o 3. REACTIONS BETWEEN SODIUM AND GRAPHITE In general, it has been found that raising the cold trap temperature ro produces a burst of carbon in the circuit, but that the level falls to o According to Guernsey and Sherman writing in 1925(2) sodium vapour will the 1 ppm level in a matter of hours. o react with carbon at 80O-90O°C yielding a carbide Na C . If this compound CD exists it would presumably be an ionic carbide similar to calcium carbide This suggests that we are not dealing primarily with a temperature dependent 6 but no further substantiating evidence is available. solubility process, but that oxide in the cold trap is acting as a mechanical trap for particles of carbon less than 5 microns in diameter, 42 hours. If it is assumed that the cold trap is 30% efficient, the minimum and that when the temperature is raised and oxide dissolves, carbon is clean-up time is of the order of 140 hours. 14 released into the circuit. Earlier studies have shown that oil in sodium is a powerful carburising agent. Subsequent tests (SEE TABLE 1) to assess the thermal stability of oil have SOLUBILITY OP CARBON IN SODIUM 4. shown that a greater degree of decomposition occurred when oil was heated in air, compared with heating it in argon. The addition of sodium caused Earlier attempts at measuring the solubility of carbon in sodium as a decomposition at lower temperature and accelrated the rate of reaction. function of temperature were made by Gratton'6) He claims to have The products were initially, a black coke-like residue (Fig 2), tar and measured the solubility of carbon in the temperature range 147 c to gasses, but at higher temperatures or longer times, the tar disappeared. 7oO°C, at two fixed oxygen levels of 0.004% and 0.026%. Analysis of the solid product, by X-ray and chemical analysis, showed it to be mainly sodium hydride with some free carbon. Analysis of the off- This was determined by introducing a stick of spectroscopically pure gases showed them to be chiefly hydrogen with 6% methane and also several carbon into a sodium filled vessel, sampling the sodium at various tempera- other hydrocarbons (Table 2); which agrees closely with the findings of ture levels through a 5y filter, and then analysing for carbon by the method of Pepkovitz and Porter"' . Hobdell at BNL^ ' . carburisation tests carried out on type 321, stainless steel foils by heating them in contact with clean sodium and the reaction products from other oil-sodium tests, showed that the foils contained Very little credence can be given to the work for at least two reasons: 2.0% carbon after 21 days at 65O°C and 1.1% carbon after 28 days at 400°C first, the explicit assumption was made that all carbon which passed compared with a starting level of <0.1%. through a 5y filter was soluble. Second, as the sodium was filtered at difference temperatures, the oxygen content of the sodium could not have been constant as suggested. In order to establish how much carbon can be taken up by the surface of stain- less steels when oil leakages occur in the reactor system; tests have It does however, appear from Gratton's work that the quantity of carbon been mounted where type 316 stainless steel foils (50 ym thick) and M316 tubing ( <\, 500 pm thick) , have been immersed in sodium-oil mixtures over the tempera- passing through a $\l filter, whether it is in solution or not, increases ture range 4OO to 650 C for various periods of time. with increasing temperature. In recent years, three determinations of carbon solubility, plus an The results from the experiments are illustrated in Figs 3 and 4. Fig 3 estimate derived from low temperature measurements using Na2C2 and thermo- shows the amount of carbon picked up by the foil materials, as a function of chemical data for Na2C2 , have been carried out. While differing in the time, at various temperatures, while Fig 4 illustrates the effect of these absolute value of carbon solubility these determinations agree well in experimental parameters upon the depth of penetration of carbon into thicker sectioned material. The depths of penetration were obtained for us, by the derived heat of solutions, with values of 105, 105, 114 and 110 kJ.g- 13 atom~l for the data of Longson and Thorley, Gehri, Ainsley et al and AERE using the nuclear microprobe analyser.
Recommended publications
  • Unit: Stoichiometry Lesson: #10 Topics: Solvay Process
    Unit: Stoichiometry Lesson: #10 Topics: Solvay Process The Solvay Process: A Case Study Many important industrial processes involve chemical reactions that are difficult to perform and still be economically feasible. In some cases, the overall process must follow a series of reaction steps. Sodium carbonate is a chemical that is needed in large amounts – it is used in the production of glass and soap. Historically, sodium carbonate was produced by burning plants or coal and mixing the ashes with water This method was both inefficient and very expensive because of the large amount of material that needed to be burned. The Solvay process was developed as a cost effective alternative. It involves a series of reaction steps and has a net reaction of: CaCO3 (s) + 2 NaCl (aq) Na2CO3 (aq) + CaCl2 (aq) A net reaction is determined by looking at the various reaction steps and eliminating any chemical that appears as both a reactant and a product in the various steps. These chemicals are known as intermediates. Step 1: Calcium carbonate (limestone) is decomposed by heat to form calcium oxide (lime) and carbon dioxide. CaCO3 (s) CaO (s) + CO2 (g) Step 2: Carbon dioxide reacts with aqueous ammonia and water to form aqueous ammonium hydrogen carbonate. CO2 (g) + NH3 (aq) + H2O (l) NH4HCO3 (aq) Step 3: The aqueous ammonium hydrogen carbonate reacts with sodium chloride to produce ammonium chloride and solid baking soda. NH4HCO3 (aq) + NaCl (aq) NH4Cl (aq) + NaHCO3 (s) Step 4: The baking soda is heated up and decomposed into sodium carbonate, water vapor and carbon dioxide. 2 NaHCO3 (s) Na2CO3 (s) + H2O (g) + CO2 (g) Step 5: The lime that was produced in the first step is mixed with water to produce slaked lime (calcium hydroxide).
    [Show full text]
  • Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
    71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient.
    [Show full text]
  • The Reaction of Calcium Chloride with Carbonate Salts
    The Reaction of Calcium Chloride with Carbonate Salts PRE-LAB ASSIGNMENT: Reading: Chapter 3 & Chapter 4, sections 1-3 in Brown, LeMay, Bursten, & Murphy. 1. What product(s) might be expected to form when solid lithium carbonate is added to an aqueous solution of calcium chloride? Write a balanced chemical equation for this process. 2. How many grams of lithium carbonate would you need to fully react with one mole of calcium chloride? Please show your work. INTRODUCTION: The purpose of this lab is to help you discover the relationships between the reactants and products in a precipitation reaction. In this lab you will react a calcium chloride solution with lithium carbonate, sodium carbonate, or potassium carbonate. The precipitate that results will be filtered and weighed. In each determination you will use the same amount of calcium chloride and different amounts of your carbonate salt. This experiment is a "discovery"- type experiment. The procedure will be carefully described, but the analysis of the data is left purposely vague. You will work in small groups to decide how best to work up the data. In the process you will have the chance to discover some principles, to use what you have learned in lecture, and to practice thinking about manipulative details and theory at the same time. Plotting your data in an appropriate manner should verify the identity of the precipitate and clarify the relationship between the amount of carbonate salt and the yield of precipitate. Predicting the formulas of ionic compounds. Compounds like calcium chloride (CaCl2) and sodium carbonate (Na2CO3) are ionic substances.
    [Show full text]
  • Reac on of Oxides with Acids and Bases
    Reacon of oxides with acids and bases Reacon of oxides with acids and bases Lesson plan (Polish) Lesson plan (English) Reacon of oxides with acids and bases Source: domena publiczna. Link to the lesson Before you start you should know that salts are a group of chemical compounds of ionic structure, composed of cations + of metals (or a cation of ammonium with the following formula NH4 ) and anions of the acid radical; that the names of salts are made up of two parts: acid radical name and metal name; that some metal oxides, such as sodium oxide or calcium oxide, react with water and produce hydroxides as a result of this reaction; that some oxides of non‐metals react with water to form acids, e.g. sulfur dioxide; that the red cabbage stock turns red in solutions of acids, violet in neutral solutions, and green in base solutions; that the methyl orange is coloured red in acids. You will learn to describe, by means of equations, the obtainment of salts in reactions of certain metal oxides with acids as well as some non‐metal oxides with bases. Nagranie dostępne na portalu epodreczniki.pl Source: GroMar Sp. z o.o.. Nagranie dźwiękowe abstraktu Reacons of metal oxides with acids Task 1 Before conducng experiment, formulate research queson and hypothesis. Write down observaon and conclusions. Analysis of the experiment: Does calcium oxide react with hydrochloric acid? Research queson Hypothesis Experiment 1 Research problem Does calcium oxide react with hydrochloric acid? Hypothesis Select one of the presented hypotheses and then verify it. The calcium oxide reacts with the hydrochloric acid.
    [Show full text]
  • United States Patent Office Patented Jan
    3,071,480 United States Patent Office Patented Jan. 1, 1963 2 actually can be modified as to proportion within the range 3,071,480 of approximately 60% by weight (62.1 mol percent) to GLASS COMPOSTEON FOR BEADS Charles E. Searigiat and Ezra M. Alexander, Jackson, 68% by weight (69.9 mol percent) and to this we add Miss, assignors to Cataphote Corporation, Toledo, basically three ingredients; these three ingredients being Ohio, a corporation of Ohio sodium oxide in a preferred quantity of 14% by weight No Drawing. Filed Dec. 5, 1960, Ser. No. 73,552 (14 mol percent) but which may range in quantity from 4. Claims. (C. 106-52) approximately 12.7% by weight (12.7 mol percent) to 16% by weight (16 mol percent), calcium oxide in a pre This invention relates to an improved glass composition ferred quantity of 14% by weight (15.5 mol percent), and, more particularly, to a glass composition suitable O but which may range in quantity from 12.7% by weight for the manufacture of solid spherical glass beads. (14.0 mol percent) to 16% by weight (17.7 mol percent), In the manufacture of glass beads for use in reflective and barium oxide in a preferred quantity of 6.3% by road signs, reflective road and curve markings, and the weight (2.5 mol percent), but which may range in quan like, it is of paramount importance that the glass com tity from 5.9% by weight (2.3 mol percent) to 7.3% by position meet certain rigid requirements, both as to 5 weight (3.0 mol percent).
    [Show full text]
  • Suplementary Information
    Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 SUPLEMENTARY INFORMATION Shedding the hydrophobic mantel of polymersomes René P. Brinkhuis, Taco R. Visser, Floris P. J. T. Rutjes, Jan C.M. van Hest* Radboud University Nijmegen,, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; E-mail: [email protected]; [email protected] Contents: Experimental General note Materials Instrumentation α- methoxy ω-methyl ester poly(ethylene glycol) α- methoxy ω-hydrazide poly(ethylene glycol) α- azido ω-methoxy poly(ethylene glycol) Aldehyde terminated polybutadiene Alkyne terminated polybutadiene Polybutadiene-Hz-poly(ethylene glycol) Polybutadiene-b-poly(ethylene glycol) Vesicle preparation Stability studies Notes and References Figures Figure 1: GPC traces of polymer 1 and its constituents. Figure 2: GPC traces of polymer 2 and its constituents. Figure 3: GPC traces of polymer 3 and its constituents. Figure 4: GPC traces of polymer 4 and its constituents. Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 Experimental section General note: All reactions are described for the lower molecular weight analogue, polyethylene glycol 1000, indicated with an A. The procedures for the polyethylene glycol 2000 analogues, indicated with B, are the same, starting with equimolar amounts. Materials: Sec-butyllithium (ALDRICH 1.4M in hexane), 1,3 butadiene (SIGMA ALDRICH, 99+%), 3- bromo-1-(trimethylsilyl-1-propyne) (ALDRICH, 98%), tetrabutylammonium fluoride (TBAF) (ALDRICH, 1.0M in THF), polyethylene glycol 1000 monomethyl ether (FLUKA), polyethylene glycol 2000 monomethyl ether (FLUKA), methanesulfonyl chloride (MsCl) (JANSSEN CHIMICA, 99%), sodium azide (ACROS ORGANICS, 99% extra pure), sodium hydride (ALDRICH, 60% dispersion in mineral oil), copper bromide (CuBr) (FLUKA, >98%), N,N,N’,N’,N”-penta dimethyldiethylenetriamine (PMDETA) (Aldrich,99%), hydrazine (ALDRICH, 1M in THF) were used as received.
    [Show full text]
  • Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture
    Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture E. Hawlicka* Institute of Applied Radiation Chemistry, Technical University, Wroblewskiego 15, 93-590, Lodz, Poland Z. Naturforsch. 41 a, 939-943 (1986); received April 25, 1986 The self-diffusion coefficients of Na+, C l- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 • 10-4— 1 • 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl - and I “ ions in water-methanol mixtures has been found. In spite of the great interest in the porperties of aqueous solution with a Nal(Tl) scintillation crystal water-organic solvent electrolyte solutions, data on of the well-type (2 x 2"). the ionic mobilities in such systems are scarce. For the self-diffusion measurements the open-end Usually the ionic mobility is calculated from the capillary method was used. The details of the equivalent conductance and the transference num­ experimental procedure have been described in [6], ber. Ionic transference numbers have been reported The labelling of the sodium ions with 22Na or for water and 17 organic solvents [1], but only for a 24Na and the iodide ions with i25I or 1311, respective­ few water-organic solvents mixtures. ly, did not make any difference in the results. Similar information can be obtained from the ionic self-diffusion coefficients, which have been reported for a few water-organic solvent systems Results [2-5], The aim of the present work was to determine the All self-diffusion experiments have been carried self-diffusion coefficients of sodium, chloride and out at 25.0 ± 0.05 °C.
    [Show full text]
  • Salt Effect on Vapor-Liquid Equilibria for Acetone-Water System'
    SALT EFFECT ON VAPOR-LIQUID EQUILIBRIA FOR ACETONE-WATER SYSTEM' E1ZO SADA, TOSHIO OHNO** AND SHIGEHARU KITO Department of Chemical Engineering, Nagoya University, Nagoya, Japan Vapor-liquid equilibrium data of acetone-water system saturated with sodium chloride, potassium chloride, sodium nitrate, and calcium chloride dihydrate are determined under atmospheric pressure. These vapor-liquid equilibrium data are correlated by a method which gives approximately the behavior of salt in the liquid. The standard deviation of correlated results is 2.32%. To carry out this correlation, the vapor pressures of aqueous solutions saturated with salts are also determined. Investigations concerned with the effect of salt the portion between Cx and Hj is brought to the addition on the vapor-liquid equilibria of binary- vapor pressure of sample solution. Whenthe system systems are of theoretical and industrial importance, attains equilibrium (about one hour is needed), and not a little knowledge of vapor-liquid equilibrium the heights of Hl5 H2, and H3 aremeasured, and the data in this field is already available2}. However, vapor pressure is calculated from the following most investigations are limited to presentation of equation. P '---(Hi-H,W+(Hg-H,W experimental data with no attempt to develop a cor- LO -% r relation. Among these, only a few correlations />*" (1) are proposed, for example, by Johnson and Furter5), As the density of sample solution is usually an order and Hashitani and Hirata3). In this paper, the vapor-liquid equilibrium data of magnitude lower than for mercury, it does not decrease the accuracy of measurementto use the for the acetone-water system saturated with each density of pure water at measuring temperature in of four kinds of salt, i.e.
    [Show full text]
  • Sodium Laurilsulfate Used As an Excipient
    9 October 2017 EMA/CHMP/351898/2014 corr. 1* Committee for Human Medicinal Products (CHMP) Sodium laurilsulfate used as an excipient Report published in support of the ‘Questions and answers on sodium laurilsulfate used as an excipient in medicinal products for human use’ (EMA/CHMP/606830/2017) * Deletion of the E number. Please see the corrected Annex for further details. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Sodium laurilsulfate used as an excipient Table of contents Executive summary ..................................................................................... 3 Introduction ................................................................................................ 4 Scientific discussion .................................................................................... 4 1. Characteristics ....................................................................................... 4 1.1 Category (function) ............................................................................................. 4 1.2 Properties........................................................................................................... 4 1.3 Use in medicinal products ..................................................................................... 5 1.4 Regulatory
    [Show full text]
  • STUDENTS 2 SCIENCE Virtual Lab Experiment Precipitates
    STUDENTS 2 SCIENCE Virtual Lab Experiment Precipitates An investigation of solubility and precipitation. A classroom Experiment in Kit Form for Grades 9-12 Brief Background: Students will learn the difference between reaction precipitates like the precipitation of Basic copper carBonate from the reaction of copper chloride and sodium carBonate and those that result solely from a change in solution soluBility (water vs. isopropanol). They will learn aBout precipitation in water treatment and purification and aBout the scientists who work to provide or maintain clean water for us. Additionally, students will learn that precipitates can sometimes Be redissolved By adding another chemical compound and thus carrying out an additional chemical reaction. Safety Students and teachers must wear properly fitting goggles as they prepare for, conduct, and clean up from the activities in the kit. Read and follow all safety warnings. Also review the Materials Safety Data Sheets. Students must wash their hands with soap and water after the activities. The activities described in this kit are intended for students under the direct supervision of teachers. Student kit packaged as 13 individual units for a class size of 26. Each student package is shared by 2 students. Items in each 2-student Ziploc bag: • (1) vial labeled “CuSO4” approximately 1/4 filled with cupric sulfate • (1) empty vial laBeled “CuSO4 Solution” • (1) 4-mL vial laBeled “CaCl2” containing small amount calcium chloride • (1) vial labeled “NaHCO3” (in red lettering) approximately 1/3
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • CASE STUDY Methane Recovery at Non-Coal Mines
    CASE STUDY Methane Recovery at Non-coal Mines Background Existing methane recovery projects at non-coal mines reduce greenhouse gas (GHG) emissions by up to 3 million tons of carbon dioxide equivalent (CO₂e). Although methane emissions are generally associated with coal mines, methane is also found in salt, potash, trona, diamond, gold, base metals, and lead mines throughout the world. Many of these deposits are located adjacent to hydrocarbon (e.g., coal and oil) deposits where methane originates. Consequently, during the process of mining non-coal deposits, methane may be released. Overview of Methane Recovery Projects Beatrix Gold Mine, South Africa Promethium Carbon, a carbon and climate change advisory firm, has developed a project to capture and use methane from the Beatrix Gold Mine in Free State, South Africa (see box). Project Specifications: Beatrix Gold Mine Name Capture and Utilization of Methane at the Gold Fields–owned Beatrix Mine in South Africa Site Free State Province, South Africa Owner Gold Fields Ltd., Exxaro On-site Pty Ltd. Dates of Operation May 2011–present Equipment Phase 1 • GE Roots Blowers • Trolex gas monitoring systems • Flame arrestor • 23 burner flare Equipment Phase 2 Addition of internal combustion engines End-use Phase 1 Destruction through flaring End-use Phase 2 4 MW power generation Emission Reductions 1.7 million tons CO²e expected over CDM project lifetime (through 2016) Commissioning of Flare at Beatrix Gold Mine (Photo courtesy of Gold Fields Ltd.) CASE STUDY Methane Recovery at Non-coal Mines ABUTEC Mine Gas Incinerator at Green River Trona Mine (Photo courtesy of Solvay Chemicals, Inc.) Green River Trona Mine, United States Project Specifications: Green River Trona Mine Trona is an evaporite mineral mined in the United States Name Green River Trona Mine Methane as the primary source of sodium carbonate, or soda ash.
    [Show full text]