Endocrinology and Reproduction Elisabet Stener-Victorin, Professor, PhD Reproductive Endocrinology and Metabolism (REM) group Department of Physiology and Pharmacology Karolinska Institutet, Stockholm, Sweden
[email protected] General Consepts of Endocrine Control Hormone – Greek hormaein = ”excite” . Autocrine signalling e.g. interleukin-1 in lymphocytes . Paracrine signalling e.g. growth and clotting factors . Endocrine signalling all circulating hormones Classical Endocrine Organs Other ”non-classical” hormone glands e.g. CNS . Kidney . Stomach . Small intestine . Skin . Heart . Lung . Placenta Katch et al Essentials of Exercise Physiol. Figure 12.1 Hormones Controls and Regulates . Reproduction including gamete production, fertilization, nourishment of the embryo and fetus . Growth and development . Regulates ion and water balance . Regulates cellular metabolism and energy balance . Mobilize the immun system by responding to infection, trauma, and emotional stress Homeostasis . Maintance of steady states by coordinated physiological mechanisms . Contributes to homeostasis by controlling availablity of substrates and metabolism . Regulating body fluid and ion balance Homeostasis – like thermostat in the room Body temperature ~ 37ºC Blood glucose 4.4 – 6.1 mM Ca2+ 4.1 – 5.2 mg/dL Phosphate 0.8 – 1.5 mM How is homestasis achived? Endocrine system : 1. Gland 2. Hormone - receptor 3. Target organ - response Katch et al Essentials of Exercise Physiol. Figure 12.2 Principles for Feed-back Negative Positive (rare) Endocrine Endocrine cell cell A A Target Target Endocrine Endocrine cell cell B B Biological effect Biological effect Principles for Feed-back and Biorythm Complex multilevel . Long feedback loop Hypo- thalamus . Active hormone regulates the hypothalamus Releasing . Short feedback loop hormone . Active hormone regulates pituitary Anterior pituitary Target hormone Target Biorytm - Pulsatile release Endocrine .