Flywheel Energy Storage - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Flywheel Energy Storage - Wikipedia, the Free Encyclopedia Flywheel energy storage - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Flywheel_energy_storage Flywheel energy storage From Wikipedia, the free encyclopedia Flywheel energy storage (FES) works by accelerating a rotor (flywheel) to a very high speed and maintaining the energy in the system as rotational energy. When energy is extracted from the system, the flywheel's rotational speed is reduced as a consequence of the principle of conservation of energy; adding energy to the system correspondingly results in an increase in the speed of the flywheel. Most FES systems use electricity to accelerate and decelerate the flywheel, but devices that directly use mechanical energy are being developed.[1] Since FES can be used to absorb or release electrical energy such devices may sometimes be incorrectly and confusingly described as either mechanical or inertia batteries. [2][3] Advanced FES systems have rotors made of high strength carbon-fiber composites, suspended by magnetic bearings, and NASA G2 flywheel spinning at speeds from 20,000 to over 50,000 rpm in a vacuum enclosure.[4] Such flywheels can come up to speed in a matter of minutes – reaching their energy capacity much more quickly than some other forms of storage.[4] Contents 1 Main components 1.1 Possible future use of superconducting bearings 2 Physical characteristics 2.1 General 2.2 Energy density 2.3 Tensile strength and failure modes 2.4 Energy storage efficiency 2.5 Effects of angular momentum in vehicles 3 Applications 3.1 Transportation 3.2 Uninterruptible power supplies 3.3 Laboratories 3.4 Aircraft launchers systems 3.5 NASA G2 flywheel for spacecraft energy storage 3.6 Amusement rides 3.7 Pulse power 1 of 13 10/28/15, 10:32 AM Flywheel energy storage - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Flywheel_energy_storage 3.8 Motor sports 3.9 Grid energy storage 3.10 Wind turbines 3.11 Toys 3.12 Toggle action presses 4 Comparison to batteries 5 See also 6 References 7 Further reading 8 External links Main components A typical system consists of a rotor suspended by bearings inside a vacuum chamber to reduce friction, connected to a combination electric motor and electric generator. First generation flywheel energy storage systems use a large steel flywheel rotating on mechanical bearings. Newer systems use carbon-fiber composite rotors that have a higher tensile strength than steel and are an order of magnitude less heavy.[5] Magnetic bearings are sometimes used instead of mechanical bearings, to reduce friction. The main components of a typical flywheel. Other components are hub and shaft. Possible future use of superconducting bearings The expense of refrigeration led to the early dismissal of low temperature superconductors for use in magnetic bearings. However, high-temperature superconductor (HTSC) bearings may be economical and could possibly extend the time energy could be stored economically. Hybrid bearing systems are most likely to see use first. High-temperature superconductor bearings have historically had problems providing the lifting forces necessary for the larger designs, but can easily provide a stabilizing force. Therefore, in hybrid bearings, permanent magnets support the load and high-temperature superconductors are used to stabilize it. The reason superconductors can work well stabilizing the load is because they are perfect diamagnets. If the rotor tries to drift off center, a restoring force due to flux pinning restores it. This is known as the magnetic stiffness of the bearing. Rotational axis vibration can occur due to low stiffness and damping, which are inherent problems of superconducting magnets, preventing the use of completely superconducting magnetic bearings for flywheel applications. Since flux pinning is the important factor for providing the stabilizing and lifting force, the HTSC can be made much more easily for FES than for other uses. HTSC powders can be formed into arbitrary shapes so long as flux pinning is strong. An ongoing challenge that has to be overcome before superconductors 2 of 13 10/28/15, 10:32 AM Flywheel energy storage - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Flywheel_energy_storage can provide the full lifting force for an FES system is finding a way to suppress the decrease of levitation force and the gradual fall of rotor during operation caused by the flux creep of SC material. Physical characteristics See also: Flywheel § Physics General Compared with other ways to store electricity, FES systems have long lifetimes (lasting decades with little or no maintenance;[4] full-cycle lifetimes quoted for flywheels range from in excess of 105, up to 107, cycles of use),[6] high energy density (100–130 W·h/kg, or 360–500 kJ/kg),[6][7] and large maximum power output. The energy efficiency (ratio of energy out per energy in) of flywheels can be as high as 90%. Typical capacities range from 3 kWh to 133 kWh.[4] Rapid charging of a system occurs in less than 15 minutes.[8] The high energy densities often cited with flywheels can be a little misleading as commercial systems built have much lower energy density, for example 11 W·h/kg, or 40 kJ/kg.[9] Energy density The maximum energy density of a flywheel rotor is mainly dependent on two factors, the first being the rotor's geometry, and the second being the properties of the material being used. For single-material, isotropic rotors this relationship can be expressed as[10] , where the variables are defined as follows: - kinetic energy of the rotor [J] - the rotor's mass [kg] - the rotor's geometric shape factor [dimensionless] - the tensile strength of the material [Pa] - the material's density [kg/m3] Geometry (shape factor) The highest possible value for the shape factor of a flywheel rotor, is , which can only be achieved by the theoretical constant-stress disc geometry.[11] A constant-thickness disc geometry has a shape factor of , while for a rod of constant thickness the value is . A thin cylinder has a shape factor of . Material properties 3 of 13 10/28/15, 10:32 AM Flywheel energy storage - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Flywheel_energy_storage For energy storage purposes, materials with high strength, and low density are desirable. For this reason, composite materials are frequently being used in advanced flywheels. The strength-to-density ratio of a material can be expressed in the units [Wh/kg], and values greater than 400 Wh/kg can be achieved by certain composite materials. Composite rotors Several modern flywheel rotors are made from composite materials. Examples include the Smart Energy 25 flywheel from Beacon Power Corporation,[12] and the PowerThru flywheel from Phillips Service Industries.[13] For these rotors, the relationship between material properties, geometry and energy density can be expressed by using a weighed-average approach.[14] Tensile strength and failure modes One of the primary limits to flywheel design is the tensile strength of the material used for the rotor. Generally speaking, the stronger the disc, the faster it may be spun, and the more energy the system can store. When the tensile strength of a composite flywheel's outer binding cover is exceeded, the binding cover will fracture, followed by the wheel shattering as the outer wheel compression is lost around the entire circumference, releasing all of its stored energy at once; this is commonly referred to as "flywheel explosion" since wheel fragments can reach kinetic energy comparable to that of a bullet. Composite materials that are wound and glued in layers tend to disintegrate quickly, first into small-diameter filaments that entangle and slow each other, and then into red-hot powder, instead of large chunks of high-velocity shrapnel as can occur with a cast metal flywheel. For a cast metal flywheel, the failure limit is the binding strength of the grain boundaries of the polycrystalline molded metal. Aluminum in particular suffers from fatigue and can develop microfractures due to repeated low-energy stretching. Angular forces may cause portions of a metal flywheel to bend outward and begin dragging on the outer containment vessel, or to separate completely and bounce randomly around the interior. The rest of the flywheel is now severely unbalanced, which may lead to rapid bearing failure from vibration, and sudden shock fracturing of large segments of the flywheel. Traditional flywheel systems require strong containment vessels as a safety precaution, which increases the total mass of the device. The energy release from failure can be dampened with a gelatinous or encapsulated liquid inner housing lining, which will boil and absorb the energy of destruction. Still, many customers of large-scale flywheel energy-storage systems prefer to have them embedded in the ground to halt any material that might escape the containment vessel. Energy storage efficiency Flywheel energy storage systems using mechanical bearings can lose 20% to 50% of their energy in two 4 of 13 10/28/15, 10:32 AM Flywheel energy storage - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Flywheel_energy_storage hours.[15] Much of the friction responsible for this energy loss results from the flywheel changing orientation due to the rotation of the earth (an effect similar to that shown by a Foucault pendulum). This change in orientation is resisted by the gyroscopic forces exerted by the flywheel's angular momentum, thus exerting a force against the mechanical bearings. This force increases friction. This can be avoided by aligning the flywheel's axis of rotation parallel to that of the earth's axis of rotation. Conversely, flywheels with magnetic bearings and high vacuum can maintain 97% mechanical efficiency, and 85% round trip efficiency.[16] Effects of angular momentum in vehicles When used in vehicles, flywheels also act as gyroscopes, since their angular momentum is typically of a similar order of magnitude as the forces acting on the moving vehicle.
Recommended publications
  • Flywheel Energy Storage
    Energy and the Environment Capstone Design Project { Bass Connections 2017 Flywheel Energy Storage (FES): Exploring Alternative Use Cases Randy Frank, Mechanical Engineering '17 Jessica Matthys, Mechanical Engineering '17 Caroline Ayanian, Mechanical Engineering '17 Daniel Herron, Civil and Environmental Engineering '17 Nathaniel Sizemore, Public Policy '17 Cameron Simpson, Economics '17 Dante Cordaro, Economics '18 Jack Carey, Environmental Science and Policy '17 Spring 2017 Contents 1 Abstract 3 2 Introduction 3 2.1 Energy Markets............................................3 3 Concept Generation 6 3.1 Traditional Energy Storage Methods................................6 3.2 Decision Matrix............................................7 4 Technology Background 8 4.1 Flywheel Past and Present......................................8 4.2 Flywheel Energy Storage Fundamentals..............................8 4.3 Limiting Factors to FES Storage Capacity.............................9 4.4 Additional Mechanical Components................................ 10 4.5 Electrical Components........................................ 14 5 Prototype Design 14 5.1 Prototype Overview and Goals................................... 14 5.2 Bill of Materials........................................... 15 5.3 Material Selection.......................................... 15 5.4 Motor Selection............................................ 15 5.5 Timeline................................................ 17 5.6 Prototype Assembly......................................... 17 5.7 Prototype
    [Show full text]
  • Energy Storage Technology Assessment Prepared for Public Service Company of New Mexico
    Energy Storage Technology Assessment Prepared for Public Service Company of New Mexico HDR Report No. 10060535-0ZP-C1001 Revision B - Draft October 30, 2017 Principal Investigators Todd Aquino, PE Chris Zuelch, PE Cristina Koss Publi c Service Company of New Mexico | Energy Storage Technology Assessment Table of Contents I. Scope .................................................................................................................................................... 3 II. Introduction / Purpose ........................................................................................................................ 3 III. The Need for Energy Storage ............................................................................................................... 6 V. Energy Storage Technologies ............................................................................................................... 7 VI. Battery Storage Technologies .............................................................................................................. 7 Lithium Ion Battery ................................................................................................................................. 13 Background ......................................................................................................................................... 13 Maturity .............................................................................................................................................. 13 Technological Characteristics
    [Show full text]
  • Flywheel Energy Storage – a Smart Grid Approach to Supporting Wind Integration
    Flywheel Energy Storage – a Smart Grid Approach to Supporting Wind Integration Chet Lyons (Beacon Power Corp.) — Tyngsboro, Massachusetts, USA — [email protected] Wind developers face tough challenges in integrating and operating wind resources on today's grid. A recently commercialized inertial energy storage technology can help address several issues of common interest to wind developers, utilities and grid operators. These include the need for more regulation to help balance generation and load as wind penetration rises; the projected shortfall in some grid areas of regional ramping capacity that is needed to cope with wind’s variability; and the difficulty of developing wind generation in smaller balancing areas that lack sufficient regulation and ramping capacity. After more than 10 years of development and successful scale-power tests in California and New York, in 2008 Beacon Power began operating the world’s first commercial 1 MW flywheel frequency regulation system under ISO New England’s Advanced Technologies Pilot Program. Beacon’s resource has since expanded to two megawatts, and by the end of 2009 is expected to be three megawatts. (See Figure 1) Figure 1: 1 MW Flywheel Regulation System Operating in New England Flywheels are installed below grade while the power electronics, monitoring and control systems are housed in a steel cargo container A flywheel energy storage system is elegant in its simplicity. The ISO monitors the frequency of the grid, and based on North American Electric Reliability Corporation (NERC) frequency control guidelines the ISO decides when more or less generation is needed to balance generation with load. When generation exceeds load, the ISO’s regulation dispatch control signal directs the flywheels to absorb energy from the grid and store it kinetically by spinning the flywheels faster.
    [Show full text]
  • Flywheel Energy Storage for Automotive Applications
    Energies 2015, 8, 10636-10663; doi:10.3390/en81010636 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Flywheel Energy Storage for Automotive Applications Magnus Hedlund *, Johan Lundin, Juan de Santiago, Johan Abrahamsson and Hans Bernhoff Division for Electricity, Uppsala University, Lägerhyddsvägen 1, Uppsala 752 37, Sweden; E-Mails: [email protected] (J.L.); [email protected] (J.S.); [email protected] (J.A.); [email protected] (H.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-18-471-5804. Academic Editor: Joeri Van Mierlo Received: 25 July 2015 / Accepted: 12 September 2015 / Published: 25 September 2015 Abstract: A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%), 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS) applications.
    [Show full text]
  • Preliminary Design and Analysis of an Energy Storage Flywheel
    PRELIMINARY DESIGN AND ANALYSIS OF AN ENERGY STORAGE FLYWHEEL ___________________________________ A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia ___________________________________ In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy by Arunvel Kailasan May 2013 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical and Aerospace Engineering ___________________________________ Arunvel Kailasan This dissertation has been read and approved by the Examining Committee: __________________________________ Timothy Dimond, Advisor __________________________________ Houston Wood, Chairman __________________________________ George Gillies __________________________________ Andres Clarens __________________________________ Wei Jiang Accepted for the School of Engineering and Applied Science: _________________________________ James H. Aylor, Dean May 2013 Abstract Energy storage is becoming increasingly important with the rising need to accommodate a greater population. Flywheel energy storage systems store kinetic energy by constantly spinning a compact rotor in a low-friction environment. When short-term back-up power is required as a result of utility power loss or fluctuations, the rotor's inertia allows it to continue spinning and the resulting kinetic energy is converted to electricity. Unlike the fossil-fuel power plants and batteries, the Flywheel based energy storage systems does not emit any harmful byproducts during their operation and have gained a lot of interest recently. A typical flywheel system is comprised of an energy storage rotor, a motor-generator system, bearings, power electronics, controls and housing. Conventional flywheel designs have a large diameter energy storage rotor attached to a smaller diameter section which is used as a motor/generator.
    [Show full text]
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • A Numerical and Graphical Review of Energy Storage Technologies', Energies, Vol
    Edinburgh Research Explorer A Numerical and Graphical Review of Energy Storage Technologies Citation for published version: Sabihuddin, S, Kiprakis, A & Mueller, M 2015, 'A Numerical and Graphical Review of Energy Storage Technologies', Energies, vol. 8, no. 1, pp. 172-216. https://doi.org/10.3390/en8010172 Digital Object Identifier (DOI): 10.3390/en8010172 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Energies General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Energies 2015, 8, 172-216; doi:10.3390/en8010172 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review A Numerical and Graphical Review of Energy Storage Technologies Siraj Sabihuddin *, Aristides E. Kiprakis and Markus Mueller Institute for Energy Systems (IES), School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK; E-Mails: [email protected] (A.E.K.); [email protected] (M.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-131-650-6487; Fax: +44-0-131-650-6554.
    [Show full text]
  • 2 MW 130 Kwh Flywheel Energy Storage System
    2 MW 130 kWh Flywheel Energy Storage System Matthew Caprio, John Herbst,1 and Robert Thelen The University of Texas at Austin Abstract The Center for Electromechanics has developed and is currently testing a 2 MW, 130 kWh (480 MJ) flywheel energy storage system (FESS) designed as a load leveling energy management device. The flywheel energy storage system consists of the energy storage flywheel, a high speed induction motor/generator, and a bi- directional power converter. The FESS is a key element of the Advanced Locomotive Propulsion System (ALPS), an advanced high speed passenger locomotive power supply being developed for use on existing (non- electrified) track to provide speed and acceleration performance comparable to modern electric trains currently in service on electrified routes. This paper describes the electrical and physical characteristics of the FESS, the application requirements that shaped the design of the FESS, and the internal details of the major components: the flywheel, motor / generator, and power converter. Safety of the flywheel is addressed in terms of the designed probability against a ring burst and the ability of the internal containment structure to controllably manage an unlikely burst event. Finally, the current status of the flywheel component development, testing, and planned future demonstrations are described. ALPS Flywheel System Overview The ALPS flywheel energy storage system (FESS) serves as an electrical load leveling device for a hybrid electric locomotive propulsion system. The FESS reduces load fluctuations of the prime generator by providing supplemental power to the dc bus during periods of peak acceleration, and recharging during periods of deceleration or excess generation capacity.
    [Show full text]
  • Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art Dagnæs-Hansen, Nikolaj A.; Santos, Ilmar Published in: Proceedings of 13th SIRM: The 13th International Conference on Dynamics of Rotating Machinery Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Dagnæs-Hansen, N. A., & Santos, I. (2019). Overview of Mobile Flywheel Energy Storage Systems State-Of- The-Art. In Proceedings of 13th SIRM: The 13th International Conference on Dynamics of Rotating Machinery (pp. 282-294). Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, Copenhagen, Denmark, 13th – 15th February 2019 Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art Nikolaj A. Dagnaes-Hansen 1, Ilmar F.
    [Show full text]
  • The Electromechanical Battery
    12 13 A New Look at an Old Idea TheThe ElectromechanicalElectromechanical BatteryBattery Laboratory researchers PINNING at 60,000 revolutions “charged” by spinning its rotor to lead–acid battery. Power densities can S per minute, a cylinder about the maximum speed with an integral soar to 5 to 10 kW/kg, several times size of a large coffee can may hold the generator/motor in its “motor mode.” that of a typical gasoline-powered are integrating innovative key to the long-awaited realization of It is “discharged” by slowing the rotor engine and up to 100 times that of practical electric cars and trucks. The of the same generator/motor to draw out typical electrochemical batteries. And materials and designs to graphite, fiber-composite cylinder the kinetically stored energy in its because of its simple design and belongs to a new breed of LLNL- “generator mode.” The advanced design advanced materials, an EMB is developed, flywheel-based, energy features a special array of permanent expected to run without maintenance develop highly efficient storage systems with new materials, magnets (called a Halbach array) in the for at least a decade. new technologies, and new thinking generator–motor to perform these Livermore researchers envision about the most efficient ways to charging and discharging functions several small, maintenance-free and cost-effective energy store energy. efficiently. modules, each with a kilowatt-hour of Called an electromechanical battery The EMB offers significant energy storage, for use in electric or (EMB) by its Laboratory creators, the advantages over other kinds of energy hybrid-electric vehicles. See the storage.
    [Show full text]
  • Journal of Hip Hop Studies
    et al.: Journal of Hip Hop Studies Published by VCU Scholars Compass, 2014 1 Journal of Hip Hop Studies, Vol. 1 [2014], Iss. 1, Art. 1 Editor in Chief: Daniel White Hodge, North Park University Book Review Editor: Gabriel B. Tait, Arkansas State University Associate Editors: Cassandra Chaney, Louisiana State University Jeffrey L. Coleman, St. Mary’s College of Maryland Monica Miller, Lehigh University Editorial Board: Dr. Rachelle Ankney, North Park University Dr. Jason J. Campbell, Nova Southeastern University Dr. Jim Dekker, Cornerstone University Ms. Martha Diaz, New York University Mr. Earle Fisher, Rhodes College/Abyssinian Baptist Church, United States Dr. Daymond Glenn, Warner Pacific College Dr. Deshonna Collier-Goubil, Biola University Dr. Kamasi Hill, Interdenominational Theological Center Dr. Andre Johnson, Memphis Theological Seminary Dr. David Leonard, Washington State University Dr. Terry Lindsay, North Park University Ms. Velda Love, North Park University Dr. Anthony J. Nocella II, Hamline University Dr. Priya Parmar, SUNY Brooklyn, New York Dr. Soong-Chan Rah, North Park University Dr. Rupert Simms, North Park University Dr. Darron Smith, University of Tennessee Health Science Center Dr. Jules Thompson, University Minnesota, Twin Cities Dr. Mary Trujillo, North Park University Dr. Edgar Tyson, Fordham University Dr. Ebony A. Utley, California State University Long Beach, United States Dr. Don C. Sawyer III, Quinnipiac University Media & Print Manager: Travis Harris https://scholarscompass.vcu.edu/jhhs/vol1/iss1/1 2 et al.: Journal of Hip Hop Studies Sponsored By: North Park Universities Center for Youth Ministry Studies (http://www.northpark.edu/Centers/Center-for-Youth-Ministry-Studies) . FO I ITH M I ,I T R T IDIE .ORT ~ PAru<.UN~V RSllY Save The Kids Foundation (http://savethekidsgroup.org/) 511<, a f't.dly volunteer 3raSS-roots or3an:za6on rooted :n h;,P ho,P and transf'orMat:ve j us6c.e, advocates f'or alternat:ves to, and the end d, the :nc..arc.eration of' al I youth .
    [Show full text]
  • Strategic Plan a Collaborative Vision for the Movement Through 2015
    Wikimedia Strategic Plan A collaborative vision for the movement through 2015 February 2011 Strategy... the Wikimedia way The strategic plan is the culmination of a collaborative In July 2009, we launched our first-ever strategy-development project designed process undertaken by the Wikimedia Foundation and the to produce a five-year strategic plan for the Wikimedia movement. global community of Wikimedia project volunteers through From the outset, we believed that an open process would result in a smarter, more 2009 and 2010. The process aimed to understand and effective strategy. Just as Wikipedia is the encyclopedia anyone can edit, we wanted address the critical challenges and opportunities facing the the strategy project to invite participation from anyone who wanted to help. Wikimedia movement through 2015. It has culminated in a As the project unfolded, more than 1,000 people from around the world contributed series of priorities and goals, as well as specific operational in more than 50 languages. We received more than 900 proposals aiming to meet a initiatives for the Wikimedia Foundation, that will define the wide variety of challenges and opportunities. We conducted more than 65 interviews with experts and advisers. We carried out a survey of more than 1,200 lapsed editors. movement’s continued success. And we staged hundreds of discussions both face-to-face in cities around the world, and via IRC, Skype, mailing lists and wiki pages. The Wikimedia Foundation is the U.S.-based 501(c)(3) Non-profit strategy consultancy The Bridgespan Group provided frameworks, data non-profit organization that operates and manages the and analysis.
    [Show full text]