Innovative Aircraft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Fond Farewell to Ve Fantastic Eets
NEWS RELEASE A fond farewell to ve fantastic eets 4/30/2020 Last month, American Airlines announced plans to accelerate the retirement of some older, less fuel-ecient aircraft from its eet sooner than originally planned. As ying schedules and aircraft needs are ne-tuned during this period of record low demand, American will take the unique step of retiring a total of ve aircraft types. American has ocially retired the Embraer E190 and Boeing 767 eets, which were originally scheduled to retire by the end of 2020. The airline has also accelerated the retirement of its Boeing 757s and Airbus A330-300s. Additionally, American is retiring 19 Bombardier CRJ200 aircraft operated by PSA Airlines. These changes remove operating complexity and will bring forward cost savings and eciencies associated with operating fewer aircraft types. It will also help American focus on ying more advanced aircraft as we continue receiving new deliveries of the Airbus A321neo and the Boeing 737 MAX and 787 family. American’s narrowbody eet also becomes more simplied with just two cockpit types – the Airbus A320 and the Boeing 737 families. This benets American’s operational performance through training eciency and streamlined maintenance. American continues to evaluate its schedule and remains committed to caring for customers on life’s journey. These changes will help American continue to provide a reliable travel experience around the world, even during these uncertain times. Here’s a snapshot of the aircraft exiting American’s eet: Airbus A330-300 — Blue Sky News/Pittsburgh International AirportAirbus A330-300 1 Joined the US Airways eet in 2000 prior to joining American’s eet in 2013. -
Years Years Service Or 20,000 Hours of Flying
VOL. 9 NO. 1 OCTOBER 2001 MAGAZINE OF THE ASSOCIATION OF ASIA PACIFIC AIRLINES 50 50YEARSYEARS Japan Airlines celebrating a golden anniversary AnsettAnsett R.I.PR.I.P.?.? Asia-PacificAsia-Pacific FleetFleet CensusCensus UPDAUPDATETE U.S.U.S. terrterroror attacks:attacks: heavyheavy economiceconomic fall-outfall-out forfor Asia’Asia’ss airlinesairlines VOL. 9 NO. 1 OCTOBER 2001 COVER STORY N E W S Politics still rules at Thai Airways International 8 50 China Airlines clinches historic cross strait deal 8 Court rules 1998 PAL pilots’ strike illegal 8 YEARS Page 24 Singapore Airlines pulls out of Air India bid 10 Air NZ suffers largest corporate loss in New Zealand history 12 Japan Airlines’ Ansett R.I.P.? Is there any way back? 22 golden anniversary Real-time IFE race hots up 32 M A I N S T O R Y VOL. 9 NO. 1 OCTOBER 2001 Heavy economic fall-out for Asian carriers after U.S. terror attacks 16 MAGAZINE OF THE ASSOCIATION OF ASIA PACIFIC AIRLINES HELICOPTERS 50 Flying in the face of bureaucracy 34 50YEARS Japan Airlines celebrating a FEATURE golden anniversary Training Cathay Pacific Airways’ captains of tomorrow 36 Ansett R.I.P.?.? Asia-Pacific Fleet Census UPDATE S P E C I A L R E P O R T Asia-Pacific Fleet Census UPDATE 40 U.S. terror attacks: heavy economic fall-out for Asia’s airlines Photo: Mark Wagner/aviation-images.com C O M M E N T Turbulence by Tom Ballantyne 58 R E G U L A R F E A T U R E S Publisher’s Letter 5 Perspective 6 Business Digest 51 PUBLISHER Wilson Press Ltd Photographers South East Asia Association of Asia Pacific Airlines GPO Box 11435 Hong Kong Andrew Hunt (chief photographer), Tankayhui Media Secretariat Tel: Editorial (852) 2893 3676 Rob Finlayson, Hiro Murai Tan Kay Hui Suite 9.01, 9/F, Tel: (65) 9790 6090 Kompleks Antarabangsa, Fax: Editorial (852) 2892 2846 Design & Production Fax: (65) 299 2262 Jalan Sultan Ismail, E-mail: [email protected] Ü Design + Production Web Site: www.orientaviation.com E-mail: [email protected] 50250 Kuala Lumpur, Malaysia. -
Risk to Ozone and Ozone-Derived Oxidation Products on Commercial Aircraft Clifford P
Risk to Ozone and ozone-derived oxidation products on commercial aircraft Clifford P. Weisela Charles J. Weschlera,b Kris Mohana Jack Spenglerc Jose Vallarinoc William W Nazaroffc aEnvironmental & Occupational Health Sciences Institute, Rutgers University, NJ bInternational Centre for Indoor Environment and Energy,Tech Inst Denmark cHarvard School of Public Health, Boston, MA dDepartment of Civil and Environmental Engineering, UC, Berkeley, CA Background • At cruise altitude (10000 to 11000 m), ozone levels outside an aircraft are high – typically 200 to 800 ppb • Atmospheric conditions, such as folds in the tropopause, can result in an influx of stratospheric air into the lower atmosphere. Thus even lower flying aircraft can encounter high ozone levels Background • In the 1960s high ozone levels Dr. David Bates placed rubber bands (specially produced without antioxidants) in planes and observed that they cracked in an analogous fashion to a similar set exposed to ozone on the ground. At the same time toxicological symptom associated with ozone was observed occurring in flight attendants • To reduce ozone on planes that cruise at high altitude most wide-body aircraft have ozone filters to remove ~85% of the ozone from the ventilation air • However, only ~ 1/2 narrow-body aircraft remove ozone from the ventilation air Background • In 1980 FAA set an ozone standard in the airplane cabin of 100ppb average for flights exceeded 3 hours and 250ppb maximum – sea level equivalent. (Note ground level standard in 75ppb for 8 hours and 120ppm for -
Travel & Tourism Industry – Non-Stop Transatlantic Flights from Germany to the United States Summer 2017
Non-stop Flights Germany-USA Summer 2017 Germany: Travel & Tourism Industry – Non-StopPage 1 of 5 Transatlantic Flights from Germany to the United States Summer 2017 Elizabeth Walsh/Tanja Kufner March 17 Summary This is an inventory of non-stop transatlantic flights from Germany to the United States, based on information received from the airlines in January 2017. It is an indication of summer 2017 capacity using April 1 as the sample date, unless otherwise stated. While there are many direct flights with one stopover offered by U.S. and European carriers from Germany to the United States, this overview covers only non-stop flights. Market Data Airline From To Plane Capacity Frequency per week airberlin DUS, BOS, Airbus A330-200 268 Eco 7 daily Dusseldorf Boston 46 XL Eco 19 Business Airberlin DUS, JFK, Airbus A330-200 268 Eco 14 2x daily Dusseldorf New York 46 XL Eco 19 Business airberlin DUS, LAX, Airbus A330-200 268 Eco 7 daily Dusseldorf Los Angeles 46 XL Eco 19 Business Airberlin DUS, MIA, Airbus A330-200 268 Eco 7 daily Dusseldorf Miami 46 XL Eco 19 Business Airberlin DUS, RSW, Airbus A330-200 268 Eco 4 Tue/Thu/Sat/Sun Dusseldorf Fort Myers 46 XL Eco 19 Business airberlin DUS, SFO, Airbus A330-200 268 Eco 7 daily Dusseldorf San Francisco 46 XL Eco 19 Business Airberlin TXL, JFK, Airbus A330-200 268 Eco 14 2x daily Berlin (Tegel) New York 46 XL Eco 19 Business Airberlin TXL, ORD, Airbus A330-200 268 Eco 7 daily Berlin (Tegel) Chicago 46 XL Eco 19 Business Airberlin TXL, MIA, Airbus A330-200 268 Eco 5 Tue/Thu/Fri/Sat/Sun Berlin (Tegel) Miami 46 XL Eco 19 Business Airberlin TXL, SFO, Airbus A330-200 268 Eco 4 Mon, Wed, Fri & Sun from Berlin (Tegel) San Francisco 46 XL Eco May 19 Business Airberlin TXL, LAX, Airbus A330-200 268 Eco 3 Tue, Thu & Sat from May Berlin (Tegel) Los Angeles 46 XL Eco 19 Business Airberlin DUS, MCO, Airbus A330-200 268 Eco 5 Mon, Wed, Fri, Sat & Sun Dusseldorf Orlando 46 XL Eco from May 19 Business export.gov The U.S. -
A PERSONAL VIEW by Dr Ken Ramsden 2010
THE PAST PRESENT AND FUTURE WITH AIRCRAFT AND THEIR ENGINES A PERSONAL VIEW BY Dr Ken Ramsden 2010 1 CONTENTS HISTORY OF FLIGHT EARLY COMMERCIAL AVIATION COMPETITION CURRENT TECHNOLOGY OF CIVIL AIRCRAFT THE NEAR FUTURE WITH CIVIL AIRCRAFT THE LONG TERM FUTURE FOR CIVIL AIRCRAFT?? HISTORICAL DEVELOPMENT OF AIRCRAFT ENGINES CURRENT AIRCRAFT ENGINES FUTURE ENGINE DEVELOPMENT MODERN MILITARY AIRCRAFT AND ENGINES 2 HISTORY OF FLIGHT 1903 Wright Brothers – First Powered Flight - Kittyhawk OR SANTOS DUMONT 1947 Chuck Yeager Sound Barrier X-1 1961 Yurij Gagarin – Space Flight 3 HISTORY OF FLIGHT THE THIRTIES AND FORTIES BATTLE OF BRITAIN FLIGHT SUPERMARINE SPITFIRE AVRO LANCASTER HAWKER HURRICANE 4 HISTORY OF FLIGHT THE FIFTIES AND SIXTIES THE AVIATION MONOPOLY RACE BLIGHTED BY POLITICS TSR2 Mach 0.9 at sea level Mach 2.2 at 60000 ft Commercially unsuccessful ?? CONCORDE – MACH 2 AT 60000 FT “OLYMPIC ENGINES” FF IN MARCH 69, LAUNCHED IN 1976 5 HISTORY OF FLIGHT TSR2 AND (FLYING) VULCAN AT DUXFORD TSR 2 - XR222 6 EARLY COMMERCIAL AVIATION COMPETITION 7 EARLY COMMERCIAL AVIATION COMPETITION TECHNICALLY UNSUCCESSFUL ?? COMET - Mach 0.85 AT 36000 FT SQUARE WINDOWS FF JULY 49 WITH HIGH CORNER STRESS LAUNCHED JAN 52 Ken’s theory DeH GHOST ENGINES LOW FREQUENCY PISTON ENGINES WITHDRAWN EARLY 80’s VERSUS HIGH FREQUENCY GT’S ?? 8 EARLY COMMERCIAL AVIATION COMPETITION COMMERCIALLY SUCCESSFUL BOEING 707 FF JULY 54 LAUNCHED OCT 58 ENGINES JT3D OR CFM56 BOEING 737 FF APRIL 67 LAUNCHED FEB 68 ENGINES JT8D OR CFM56 9 CURRENT TECHNOLOGY OF CIVIL AIRCRAFT 10 CURRENT -
Transatlantic Airline Fuel Efficiency Ranking, 2017
WHITE PAPER SEPTEMBER 2018 TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 Brandon Graver, Ph.D., and Daniel Rutherford, Ph.D. www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank Tim Johnson, Andrew Murphy, Anastasia Kharina, and Amy Smorodin for their review and support. We also acknowledge Airline Data Inc. for providing processed BTS data, and FlightGlobal for Ascend Fleet data. International Council on Clean Transportation 1225 I Street NW Suite 900 Washington, DC 20005 USA [email protected] | www.theicct.org | @TheICCT © 2018 International Council on Clean Transportation TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ iii 1. INTRODUCTION .................................................................................................................... 2 2. METHODOLOGY ................................................................................................................... 3 2.1 Airline selection .................................................................................................................................3 2.2 Fuel burn modeling..........................................................................................................................5 2.3 Fuel efficiency calculation ............................................................................................................6 -
Airlines and Tourism Development: the Case of Zimbabwe 69 Brian Turton
TOURISM AND TRANSPORT ISSUES AND AGENDA FOR THE NEW MILLENNIUM ADVANCES IN TOURISM RESEARCH Series Editor: Professor Stephen J. Page University of Stirling, U.K. [email protected] Advances in Tourism Research series publishes monographs and edited volumes that comprise state-of-the-art research findings, written and edited by leading researchers working in the wider field of tourism studies. The series has been designed to provide a cutting edge focus for researchers interested in tourism, particularly the management issues now facing decision makers, policy analysts and the public sector. The audience is much wider than just academics and each book seeks to make a significant contribution to the literature in the field of study by not only reviewing the state of knowledge relating to each topic but also questioning some of the prevailing assumptions and research paradigms which currently exist in tourism research. The series also aims to provide a platform for further studies in each area by highlighting key research agendas which will stimulate further debate and interest in the expanding area of tourism research. The series is always willing to consider new ideas for innovative and scholarly books, inquiries should be made directly to the Series Editor. Published: THOMAS Small Firms in Tourism: International Perspectives KERR Tourism Public Policy and the Strategic Management of Failure WILKS & PAGE Managing Tourist Health and Safety in the New Millennium BAUM & LUNDTORP Seasonality in Tourism ASHWORTH & TUNBRIDGE The Tourist-Historic -
New Trends in Future Aircraft Development
NEW TRENDS IN FUTURE AIRCRAFT DEVELOPMENT S. Tsach and D. Penn Engineering Division Israel Aircraft Industries (IAI) Ben-Gurion Airport, Israel ABSTRACT This paper reviews the new trends that are emerging in the development of air vehicles of the future. Technological developments in many fields are reviewed, including aerodynamics, propulsion, flight control, structures, materials, production techniques, avionics, communications, computerization, miniaturization and others. The paper addresses the future needs and requirements of both the military and civil aerospace markets. The needs of military intelligence are expressed in the considerable progress made in the development of UAVs. The transportation needs of passengers and cargo are expressed in the continuous search for greater efficiency and cost reduction in an ever-expanding market place. The review includes examples of developments in the field of civilian aircraft such as Airbus 380, Sonic Cruiser, BWB configuration and supersonic business jet; and discusses technological developments in small business aircraft like the Eclipse 500 and the SATS programs of NASA. Developments in the sphere of unmanned aircraft are described, including UCAVs, OAV, CRW, solar HALE, micro-UAVs and also sensor craft goals are addressed. The paper examines the technological goals which industry has defined for the improvement of aviation and air vehicles, highlighting the American and European long term plans as published in the American Aerospace Commission report, “NASA Aeronautics Blueprint” and the European document “ARTE21”. Some examples of IAI’s recent activities in aircraft development and the integration of advanced technologies are described. This includes the use of CFD for design and improvement of advanced aircraft and the use of production techniques for composite materials with reference to the G150, Airtruck and the family of Heron UAVs. -
A New Standard of Service
PASSENGER CHARTER A New Standard of Service Since launching passenger charter operations in 2010, Atlas Air has flown more than one million passengers around the globe, carrying them to their destinations safely, securely and with market- leading on-time reliability. With our efficient aircraft, tailor-made service and superior performance, Atlas Air passenger charters deliver value anytime, anywhere. Our modern fleet of 747s and 767s offers the flexibility and comfort VIP Service that charter brokers and others seek when satisfying customer Atlas Air’s custom configured desires for high-quality service and exceptional in-flight experience, executive Boeing 747-400 domestically or internationally. Our passengers include pro and college offers a total of 185 seats, sports teams, musical artists, celebrities, world leaders and group- caters to the discerning traveler travel companies. Atlas Air is also a trusted partner of the U.S. Air and offers a refined and fully Force’s Air Mobility Command and the U.S. Transportation Command, tailored travel experience. which rely on us to transport troops around the world. Comfort Service Our Fleet Atlas Air passenger fleet consists of some of the best-known and 747-400: Our 470-seat Boeing 747, of which 23 are business-class most reliable icons of the skies—the wide-body Boeing 747-400 and seats, is ideal for moving large groups efficiently yet comfortably. the smaller twin-aisle Boeing 767-300ER and 767-200. With flexible 767-300ER: Our Boeing 767-300ERs have a small business class seating configurations—between 98 and 462 passengers—Atlas Air’s section and up to 240 seats with mostly a 32-inch-pitch configuration. -
Aircraft Technology Roadmap to 2050 | IATA
Aircraft Technology Roadmap to 2050 NOTICE DISCLAIMER. The information contained in this publication is subject to constant review in the light of changing government requirements and regulations. No subscriber or other reader should act on the basis of any such information without referring to applicable laws and regulations and/or without taking appropriate professional advice. Although every effort has been made to ensure accuracy, the International Air Transport Association shall not be held responsible for any loss or damage caused by errors, omissions, misprints or misinterpretation of the contents hereof. Furthermore, the International Air Transport Association expressly disclaims any and all liability to any person or entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the consequences of anything done or omitted, by any such person or entity in reliance on the contents of this publication. © International Air Transport Association. All Rights Reserved. No part of this publication may be reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without the prior written permission from: Senior Vice President Member & External Relations International Air Transport Association 33, Route de l’Aéroport 1215 Geneva 15 Airport Switzerland Table of Contents Table of Contents .............................................................................................................................................................................................................. -
Federal Register/Vol. 86, No. 101/Thursday, May 27, 2021/Rules and Regulations
Federal Register / Vol. 86, No. 101 / Thursday, May 27, 2021 / Rules and Regulations 28483 Standards Office, as appropriate. If sending DEPARTMENT OF TRANSPORTATION Room W12–140, 1200 New Jersey information directly to the Large Aircraft Avenue SE, Washington, DC 20590. Section, International Validation Branch, Federal Aviation Administration FOR FURTHER INFORMATION CONTACT: send it to the attention of the person Wayne Lockett, Aerospace Engineer, identified in paragraph (j) of this AD. 14 CFR Part 39 Information may be emailed to: 9-AVS-AIR- Airframe Section, FAA, Seattle ACO [email protected]. Before using any [Docket No. FAA–2019–0862; Project Branch, 2200 South 216th St., Des approved AMOC, notify your appropriate Identifier 2019–NM–121–AD; Amendment Moines, WA 98198; phone and fax: principal inspector, or lacking a principal 39–21552; AD 2021–10–19] 206–231–3524; email: wayne.lockett@ inspector, the manager of the responsible faa.gov. Flight Standards Office. RIN 2120–AA64 (2) Contacting the Manufacturer: For any SUPPLEMENTARY INFORMATION: Airworthiness Directives; The Boeing requirement in this AD to obtain instructions Background from a manufacturer, the instructions must Company Airplanes be accomplished using a method approved The FAA issued a notice of proposed by the Manager, Large Aircraft Section, AGENCY: Federal Aviation rulemaking (NPRM) to amend 14 CFR International Validation Branch, FAA; or Administration (FAA), DOT. part 39 by adding an AD that would EASA; or ATR–GIE Avions de Transport ACTION: Final rule. apply to certain The Boeing Company Re´gional’s EASA Design Organization Model 767–200, –300, –300F, and Approval (DOA). If approved by the DOA, SUMMARY: The FAA is adopting a new –400ER series airplanes. -
Air Travel, Life-Style, Energy Use and Environmental Impact
Air travel, life-style, energy use and environmental impact Stefan Kruger Nielsen Ph.D. dissertation September 2001 Financed by the Danish Energy Agency’s Energy Research Programme Department of Civil Engineering Technical University of Denmark Building 118 DK-2800 Kgs. Lyngby Denmark http://www.bvg.dtu.dk 2001 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Report BYG DTU R-021 2001 ISSN 1601-2917 ISBN 87-7877-076-9 Executive summary This summary describes the results of a Ph.D. study that was carried out in the Energy Planning Group, Department for Civil Engineering, Technical University of Denmark, in a three-year period starting in August 1998 and ending in September 2001. The project was funded by a research grant from the Danish Energy Research Programme. The overall aim of this project is to investigate the linkages between energy use, life style and environmental impact. As a case of study, this report investigates the future possibilities for reducing the growth in greenhouse gas emissions from commercial civil air transport, that is passenger air travel and airfreight. The reason for this choice of focus is that we found that commercial civil air transport may become a relatively large energy consumer and greenhouse gas emitter in the future. For example, according to different scenarios presented by Intergovernmental Panel on Climate Change (IPCC), commercial civil air transport's fuel burn may grow by between 0,8 percent a factor of 1,6 and 16 between 1990 and 2050. The actual growth in fuel consumption will depend on the future growth in airborne passenger travel and freight and the improvement rate for the specific fuel efficiency.