<<

1 The Genetics of Coat Color

For centuries, breeders have considered coat color an important physical attribute of a horse. Using basic genetic principles, breeders can predict the coat colors of offspring and mate that will produce foals with desired coat colors. This activity will demonstrate some of these genetic principles which can then be applied to other characteristics and species.

From top left: Chincoteague Pony, Friesian, Quarter Horse, . Photos by Jim Shambhu. Come see these breeds and more at the Kentucky Horse Park!

*This educational packet is intended for high school biology students.

Name: ______Date: ______

Class: ______2 Table of Contents

Pg. 3 Why does coat color matter?

Pg. 4 The Genetic Blueprint: Genes

Pg. 5 How do we study genes?

Pg. 6 The Genetics of Horse Coat Color

Pg. 7-8 Genetic Tool: Punnett Square

Pg. 9-10 White Coats: Beautiful But Deadly

Pg. 11 Critical Thinking

Pg. 12 Vocabulary

Pg. 13 Genetics Vocabulary Crossword 3 Why does coat color matter?

Horse breeders have selectively bred for certain coat colors for centuries. Though coat color has shown no correlation to improved work or performance by a horse, breeders still have a preference for coat colors called coat color bias. These preferences exist for many reasons. Horses compete in shows just as dogs do, and coat color is part of the breed standard against which each An at a show. Photo by Jim Shambhu. horse is judged. Breeders and owners that participate in horse shows will choose horses with coats that conform to the breed standard. Horses also pull wagons and carriages in parades throughout the country. Often, these horses have matching coats to accentuate their role as a team. Owners will then choose horses that have the desired coat to participate in the parade. Many people simply have a favorite color of horse that is aesthetically pleasing to them Shires Colin and TJ pulling a trolley. Photo by pixbysteve.com. Come see Colin and TJ at the Kentucky Horse Park! and want to own horses of that color. 4 The Genetic Blueprint: Genes

Coat color is inherited, meaning that the condition of the trait is passed directly from parent to offspring. An understanding of this mechanism allows breeders to predict the coat colors of foals based upon their parents.

Sweetie and her foal Surrie. Photo by Cindy Evans Photography. Come see Sweetie and Surrie at the Kentucky Horse Park!

The genetic “information” about all of an organism’s traits, such as a horse’s coat color, is contained on Locus for chromosomes inside their cells. A black coat gene, a segment of the chromosome, contains the information for a speciic trait or suite of traits. Genes are further divided into individual units called loci. Each locus, either alone or in conjunction with other loci, inluences part of the trait controlled by its corresponding gene. For example, coat color is determined by a Chromosome Gene for coat color single gene, and several loci within that gene determine color. Because each chromosome is paired with its homologous chromosome, another chromosome that contains genes for the same traits, there are two copies of each gene and locus in the genome that are not necessarily Copies of the same locus identical (their similarity is represented here by color). We will Genes for coat color on homologous chromosomes. later see that this second “copy” of Loci with identical shades of color are molecularly each gene is responsible for the vast identical. Loci with the same color but different shades variation seen among the coats of still code for the same characteristic but are molecularly different. horses. In most cases, offspring receive copies of their parents loci and thus inherit traits from their parents. 5 How do we study genes?

The molecular structure of a locus determines the physical appearance of its associated trait. The two copies of a Loci on the locus may or may not be identical, and A A same the variation in locus structure results D d chromosome in the physical variation of traits. Two that code for single letters, either capital or b b different lowercase, commonly represent the K K characteristics of the same molecular structure of the locus. These w W trait have letters are arbitrarily assigned by the Loci on homologous chromosomes that different scientist studying the locus. Each letter code for the same characteristics of a trait letters. is called an and represents a have the same letter, but sometimes have speciic physical and molecular different cases. This concept was coniguration of the locus. Two illustrated by the different shades of the different loci will have different letters same color in the diagram on the previous (A and B, for example), but the two Genes for coat color on homologous chromosomes. copies of a single locus will have the same letter and be written together (AA, aa, or Aa).

Black The letters that represent loci are known together as a genotype. Every Bb = coat genotype has a corresponding phenotype, which is the physical appearance of the trait that results from the genotype’s molecular coniguration. Next, let’s use horse coat color as an example of genotype Genotype: letters of Phenotype: physical and phenotype. the two loci that appearance coded code for the same for by the genotype. characteristic of the same trait. 6 The Genetics of Horse Coat Color

One locus determines black and coat color. At the black and chestnut color locus, a B allele denotes black and a b allele denotes chestnut. The B allele is dominant, meaning that any genotype with this allele will produce the B phenotype. Both the BB and Bb genotypes produce a black coat. The b allele is recessive, meaning that it is masked by a dominant allele in a Bb genotype but is expressed in a bb genotype. The bb genotype, then, produces a chestnut coat. If you know the genotypes of two parents, you can predict the genotype and phenotype of their offspring.

Black BB = coat

Black Bb = The B allele is dominant, so coat its phenotype is expressed, even when the b allele is present in the genotype.

Chestnut bb = coat 7 Genetic Tool: Punnett Square

A Punnett square is a simple genetic tool that can be used to demonstrate the possible offspring between two parents using their genotype. Let’s set up a square for a chestnut horse and a Bb . One cross is done for you as an example.

Write the irst Write the second allele for the Bb allele for the Bb horse here. horse here. B

Write the irst allele for the bb horse here. b Bb

Write the second allele for the bb horse here.

The crosses in the boxes represent the possible genotypes of the offspring from this mating. In this case, we see that statistically, half of the offspring of these parents over their breeding time will be black and half will be chestnut. Genetic Tool: Punnett Square (cont.) 8

Let’s see what happens when two Bb black horses breed. Fill in the following Punnett square:

Fill in the blanks:

______(fraction) of the offspring will be black, but two different genotypes are represented among the black offspring. Of the black offspring, 1/3 will be ______(genotype) and 2/3 will be ______(genotype). The remaining ______(fraction) will be chestnut. 9 White Coats: Beautiful But Deadly

White coats have long been a desirable color for their beauty, but are also more rare among horses. Why? White coats present another different but interesting mechanism of genetic inheritance. More often than not, white coats are a result of a genetic at a particular locus as the foal is developing. This mutation can then be passed to the offspring of white horses. They are controlled by a locus where the W allele is dominant and epistatic, meaning that when present, it will mask all other genotypes that inluence the same phenotypic trait. For example, if a horse has the B allele for being black but also possesses the W allele for being white, the horse will be white. The white homozygous genotype (both are dominant, WW), however, is lethal, and all foals with this genotype die shortly after birth. Horses with the heterozygous genotype (one of each allele, Ww) have white coats and live normal, White Prince, a rare white . healthy lives. The homozygous recessive Photo by Jim Shambhu. Come see White genotype(both alleles are recessive, ww) Prince at the Kentucky Horse Park! actually produces a colored coat, the color of which is controlled by alleles at other loci.

Question: A white and white stallion mate and have a white foal that dies shortly after birth. Assuming that their next offspring lives, what are their chances of having a white foal? A colored foal? Create a Punnett square to check your answer. White Coats: Beautiful But Deadly (cont.) 10

Let’s observe the epistatic effects of the white locus by setting up a Punnett square between two heterozygous mates, WwBb. First, list the possible genotypes passed on by the parents by listing every possible combination of a single allele from each locus. For example, for a WwBB individual, the possible combinations are WB and wB. The number of squares within your Punnett square will depend upon the number of genotypic combinations of the two parents.

Possible genotypes from parent 1:

Possible genotypes from parent 2:

Now set up the Punnett square for crosses between these two parents:

List the ratios and phenotypes of all the possible offspring between these two mates. 11 Critical Thinking

In the absence of genetic mutation, two non-white, non-albino horses can never have a white foal. Why? Demonstrate your answer with a two-loci Punnett square and a brief explanation. 12 Vocabulary

Allele: Molecular coniguration of a locus; combination of at least two of these comprise a genotype

Chromosome: Present in pairs in animal cells; contain genes and genetic information

Coat color bias: Showing preference for a certain coat color

Dominant: Masks recessive alleles in a heterozygous genotype

Epistatic: Masks all other genotypes that inluence the same phenotype

Gene: Segment of a chromosome; contains information for a speciic trait or suite of traits

Genotype: Letters that represent the molecular coniguration of loci

Heterozygous: Have one dominant and one recessive allele at the same locus

Homologous: Two copies of a chromosome that contain genetic information about the same traits

Homozygous: Have either two dominant or two recessive alleles at a single locus

Inheritance: Mechanism through which a trait is passed directly from parents to offspring

Loci: Individual units of genes

Phenotype: Physical appearance of a trait

Punnett square: Genetic tool used to predict genotypes and phenotypes of offspring

Recessive: Masked by a dominant allele in a heterozygous genotype 13 Genetics Vocabulary

14

ACROSS DOWN

3 Letters that represent the molecular coniguration 1 Molecular coniguration of a locus; combination of of loci at least two of these comprise a genotype

8 Masks all other genotypes that inluence the same 2 Masks recessive alleles in a heterozygous genotype phenotype 4 Genetic tool used to predict genotypes and 11 Have one dominant and one recessive allele at the phenotypes of offspring same locus 5 Have either two dominant or two recessive alleles at 12 Showing preference for a certain coat color a single locus

13 Segment of a chromosome; contains information 6 Physical appearance of a trait for a speciic trait or suite of traits 7 Masked by a dominant allele in a heterozygous 15 Mechanism through which a trait is passed directly genotype from parents to offspring 9 Two copies of a chromosome that contain genetic information about the same traits

10 Present in pairs in animal cells; contain genes and genetic information

14 Individual units of genes