HAND OR BACK PACK SPRAYER CALIBRATION Accurate Calibration Not Only Saves Money, but It Also Improves Weed Control 1

Total Page:16

File Type:pdf, Size:1020Kb

HAND OR BACK PACK SPRAYER CALIBRATION Accurate Calibration Not Only Saves Money, but It Also Improves Weed Control 1 HAND OR BACK PACK SPRAYER CALIBRATION Accurate calibration not only saves money, but it also improves weed control 1. Mark a square area of 18.5 x 18.5 feet (1/128th of an acre) 2. Fill sprayer half full of water 3. Time your self spraying marked off area 4. Spray into a container marked with ounces for the same amount of time as it took to spray 18.5 x 18.5 area. The number of ounces collected in ounce container is equal to the number of gallons you are spraying per acre (GPA) How much herbicide is added to the tank? 1. Read the herbicide label and determine the amount of herbicide rate you want to use 2. Divide your tank capacity by the Gallons Per Acre (GPA). This tells you how many acres you can spray with one tank from your sprayer. 3. Multiply the amount of herbicide you want to apply in step 1 by the acres that can be sprayed in step 2, this will tell you how much herbicide to add to your tank. Example: You have marked off an area that is 18.5 square feet. You spray the area and it takes you 45 seconds. You spray into an ounce measured container and you collect 64 ounces. Your sprayer is now calibrated to spray 64 gallons of water per acre (64 GPA) You have a (4) gallon backpack sprayer. Divide (4) gallons by (64) GPA 4/64=.0625 Which means your sprayer can spray .0625 or 2723 square feet with one tank full. Remember one acre is 43,560 square feet There for you want to times .0625 by 1 acre (.0625x43,560 = 2723 square feet) You want to use an herbicide where the label calls for a rate of 1 pint per acre and one pint is (16) ounces. So multiply (16) ounces by (.0625) = 1 ounce you would add to the 4 gallon tank. Note/Hint IF you apply 20 gallons per acre and you are using a 4 gallon backpack that equals 1/5 of an acre there for adding 1/5 of the amount of herbicide for 1 acre application. Your sprayer should be calibrated at the beginning of each spray session 18.5’ x 18.5’ Time__________ it took to spray marked off area. Number of ounces _____________collected in measured container. Gallons Per Acre (GPA) you are spraying_____________. Your sprayer size divided into (GPA) equals number of acres you can do_____________. Liquid conversions 1 gallon = 4 quarts = 8 pints =128 ounces 1 quart = 2 pints = 32 ounces = 4 cups 1 pint = 16 ounces= 2 cups 1 cup = 8 ounces =16 table spoons 1 tablespoon = 3 teaspoons = ½ ounce 1 cubic foot of water = 7.5 gallons = 63 pounds Weight conversions 1 pound = 16 ounces = 454 grams 1 ounce = 28.4 grams Area Size 1 acre = 43,560 square feet .
Recommended publications
  • The Meter Greeters
    Journal of Applied Communications Volume 59 Issue 2 Article 3 The Meter Greeters C. Hamilton Kenney Follow this and additional works at: https://newprairiepress.org/jac This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation Kenney, C. Hamilton (1976) "The Meter Greeters," Journal of Applied Communications: Vol. 59: Iss. 2. https://doi.org/10.4148/1051-0834.1951 This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Journal of Applied Communications by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. The Meter Greeters Abstract The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. This article is available in Journal of Applied Communications: https://newprairiepress.org/jac/vol59/iss2/3 Kenney: The Meter Greeters The Meter Greeters C. Hamilton Kenney The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. The U.S. A. was a signatory to the Treaty of the Meter l signed in Paris, France. in 1875, establishing the metric system as an international measurement system, but Canada did not become a signatory nation until 1907.
    [Show full text]
  • Water Heater Formulas and Terminology
    More resources http://waterheatertimer.org/9-ways-to-save-with-water-heater.html http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html http://waterheatertimer.org/pdf/Fundamentals-of-water-heating.pdf FORMULAS & FACTS BTU (British Thermal Unit) is the heat required to raise 1 pound of water 1°F 1 BTU = 252 cal = 0.252 kcal 1 cal = 4.187 Joules BTU X 1.055 = Kilo Joules BTU divided by 3,413 = Kilowatt (1 KW) FAHRENHEIT CENTIGRADE 32 0 41 5 To convert from Fahrenheit to Celsius: 60.8 16 (°F – 32) x 5/9 or .556 = °C. 120.2 49 140 60 180 82 212 100 One gallon of 120°F (49°C) water BTU output (Electric) = weighs approximately 8.25 pounds. BTU Input (Not exactly true due Pounds x .45359 = Kilogram to minimal flange heat loss.) Gallons x 3.7854 = Liters Capacity of a % of hot water = cylindrical tank (Mixed Water Temp. – Cold Water – 1⁄ 2 diameter (in inches) Temp.) divided by (Hot Water Temp. x 3.146 x length. (in inches) – Cold Water Temp.) Divide by 231 for gallons. % thermal efficiency = Doubling the diameter (GPH recovery X 8.25 X temp. rise X of a pipe will increase its flow 1.0) divided by BTU/H Input capacity (approximately) 5.3 times. BTU output (Gas) = GPH recovery x 8.25 x temp. rise x 1.0 FORMULAS & FACTS TEMP °F RISE STEEL COPPER Linear expansion of pipe 50° 0.38˝ 0.57˝ – in inches per 100 Ft. 100° .076˝ 1.14˝ 125° .092˝ 1.40˝ 150° 1.15˝ 1.75˝ Grain – 1 grain per gallon = 17.1 Parts Per million (measurement of water hardness) TC-092 FORMULAS & FACTS GPH (Gas) = One gallon of Propane gas contains (BTU/H Input X % Eff.) divided by about 91,250 BTU of heat.
    [Show full text]
  • FLIGHTS (Cal 270) 10.50 (Cal 280) 12.25 (Cal 170-345) Price Varies Cabernet Sauvignon, Paso Robles STAG's LEAP WINE CELLARS HANDS of TIME Goblet Only
    23 OUNCE ASK ABOUT PUB GLASS ADDITIONAL DRAFT $2 MORE SELECTIONS beer GOBLETS l PINTs l pub glass l HALF YARDS PINT or 23oz HALF CRISP • REFRESHING GOBLET PUB GLASS YARD BOTTLES • CANS HOUSE BEERS pint or goblet (cal 200) • pub glass (cal 290) • half yard (cal 410) OMISSION PALE ALE (cal 180) 6.00 5.8% • gluten-sensitive • or HOUSE GOLDEN PILSNER 7.00 9.00 15.00 4.8% • pilsner • fort collins, co (cal 100) 6.00 OMISSION ULTIMATE LIGHT 4.2% • gluten-sensitive • or STELLA ARTOIS 6.50 8.50 14.00 5.2% • pilsner • belgium HEINEKEN 0.0 (cal 70) 6.00 0.0% • zero alcohol • netherlands STONE TROPIC OF THUNDER 7.75 9.75 16.50 5.8% • hoppy lager • escondido, ca LAGUNITAS HOPPY REFRESHER (cal 0) 6.00 0.0% • zero alcohol • ca PINT or 23oz HALF IPA • HOPPY GOBLET PUB GLASS YARD pint or goblet (cal 270) • pub glass (cal 390) • half yard (cal 550) PINT or 23oz HALF HOUSE IPA 6.00 8.00 13.00 GOBLET PUB GLASS YARD 6.2% • india pale ale • escondido, ca wine 6oz 9oz Bottle pint or goblet (cal 200) • pub glass (cal 290) • half yard (cal 410) YARD HOUSE 23RD ANNIVERSARY: SPARKLING + WHITE + ROSÉ HOUSE GOLDEN PILSNER 7.00 9.00 15.00 NOBLE PURSUIT 7.75 9.75 16.50 6.9% • india pale ale • fort collins, co • • 4.8% pilsner fort collins, co 6oz (cal 150) • 9oz (cal 220) • bottle (cal 630) LAGUNITAS SUPER CLUSTER 8.00 − − 6.00 8.00 13.00 HOUSE HONEY BLONDE 8.0% • imperial ipa • petaluma, ca RIONDO 9.25 - 46.00 4.9% • honey beer • escondido, ca (5.25oz, cal 130) prosecco, veneto LIQUID COMPASS 8.25 − − HOUSE WHITE ALE 7.00 9.00 15.00 8.5% • imperial ipa • escondido,
    [Show full text]
  • Forests Commission Victoria-Australia
    VICTORIA, 1971 FORESTS COMMISSION VICTORIA-AUSTRALIA FIFTY SECOND ANNUAL REPORT FINANCIAL YEAR 1970-71 PRESENTED TO BOTH HOUSES OF PARLIAMENT PURSUANT TO ACT No. 6254, SECTION 35 . .Approximate Cosl of llrport.-Preparation, not given. Printing (250 copies), $1,725.00. No. 14-9238/71.-Price 80 cents FORESTS COMMISSION, VICTORIA TREASURY GARDENS, MELBOURNE, 3002 ANNUAL REPORT 1970-71 In compliance with the provisions of section 35 of the Forests Act 1958 (No. 6254) the Forests Commission has the honour to present to Parliament the following report of its activities and financial statements for the financial year 1970-71. F. R. MOULDS, Chainnan. C. W. ELSEY, Commissioner. A. J. THREADER, Commissioner. F. H. TREYV AUD, Secretary. CONTENTS PAGE 6 FEATURES. 8 fvlANAGEMENT- Forest Area, Surveys, fvlapping, Assessment, Recreation, fvlanagement Plans, Plantation Extension Planning, Forest Land Use Planning, Public Relations. 12 0PERATIONS- Silviculture of Native Forests, Seed Collection, Softwood Plantations, Hardwood Plantations, Total Plantings, Extension Services, Utilization, Grazing, Forest Engineering, Transport, Buildings, Reclamation and Conservation Works, Forest Prisons, Legal, Search and Rescue Operations. 24 ECONOMICS AND fvlARKETING- Features, The Timber Industry, Sawlog Production, Veneer Timber, Pulpwood, Other Forest Products, Industrial Undertakings, Other Activities. 28 PROTBCTION- Fire, Radio Communications, Biological, Fire Research. 32 EDUCATION AND RESEARCH- Education-School of Forestry, University of fvlelbourne, Overseas and Other Studies ; Research-Silviculture, Hydrology, Pathology, Entomology, Biological Survey, The Sirex Wood Wasp; Publications. 38 CONFERENCES. 39 ADMINISTRATJON- Personnel-Staff, Industrial, Number of Employees, Worker's Compensation, Staff Training ; fvlethods ; Stores ; Finance. APPENDICES- 43 I. Statement of Output of Produce. 44 II. Causes of Fires. 44 III. Summary of Fires and Areas Burned.
    [Show full text]
  • Fundamentals of Math CHAPTER 1
    © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION Fundamentals of Math CHAPTER 1 OBJECTIVES ■ Understand the difference between the Arabic and Roman numeral systems ■ Translate Arabic numerals to Roman numerals ■ Translate Roman numerals to Arabic numerals ■ Understand the metric system ■ Understand the apothecary system ■ Be able to convert metric to apothecary ■ Be able to convert apothecary to metric ARABIC NUMERALS The Arabic number system uses the numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and zero (0). It is also known as the decimal system. Depending on how these numbers are arranged determines the value of the number. For example, digits 4, 7, and 2 placed together (472) represent the number four hundred seventy-two. A decimal point (.) separates whole numbers, or units, from fractional num- bers, or fractional units. All numbers on the left side of the decimal point are considered whole numbers. All numbers placed on the right of the decimal point are considered fractional units, or less than one whole unit. The following num- ber line shows the relationship of Arabic numerals based on their position in a number. Ten-thousands hundreds ones tenths thousandths hundred-thousandths -----5------8------2-----4-----3---- . ----6------7------9------3------2-------------- thousands tens hundredths ten-thousandths The number 43.6 contains the numerals 4, 3, and 6. This represents forty-three units of one and six-tenths of one unit. Decimals will be covered in more detail in Chapter 2. 1 59612_CH01_FINAL.indd 1 8/20/09 7:38:45 PM © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 2 Chapter 1 ■ Fundamentals of Math ROMAN NUMERALS The Roman numeral system does not utilize numerals.
    [Show full text]
  • PINT: Probabilistic In-Band Network Telemetry
    PINT: Probabilistic In-band Network Telemetry Ran Ben Basat Sivaramakrishnan Ramanathan Yuliang Li Harvard University University of Southern California Harvard University [email protected] [email protected] [email protected] Gianni Antichi Minlan Yu Michael Mitzenmacher Queen Mary University of London Harvard University Harvard University [email protected] [email protected] [email protected] ABSTRACT 42], fast reroute [47], and path tracing [36]. A significant recent Commodity network devices support adding in-band telemetry mea- advance is provided by the In-band Network Telemetry (INT) [75]. surements into data packets, enabling a wide range of applications, INT allows switches to add information to each packet, such as including network troubleshooting, congestion control, and path switch ID, link utilization, or queue status, as it passes by. Such tracing. However, including such information on packets adds sig- telemetry information is then collected at the network egress point nificant overhead that impacts both flow completion times and upon the reception of the packet. application-level performance. INT is readily available in programmable switches and network in- We introduce PINT, an in-band network telemetry framework terface cards (NICs) [8, 14, 58, 85], enabling an unprecedented level that bounds the amount of information added to each packet. PINT of visibility into the data plane behavior and making this technology encodes the requested data on multiple packets, allowing per-packet attractive for real-world deployments [16, 46]. A key drawback of overhead limits that can be as low as one bit. We analyze PINT and INT is the overhead on packets.
    [Show full text]
  • Measures and Conversion Chart Pesticide Storage
    Conversions and Pesticide Storage 63 MEASURES AND CONVERSION CHART Prepared by Hilary A. Sandler Liquid Measures Length and Area Conversions 1 oz = 2 tablespoons = 6 teaspoons = 29.6 ml 1 acre = 43,560 sq. ft = 0.405 hectares 1 cup = 8 oz 1 hectare = 2.47 acres 1 pint = 2 cups = 16 oz 1 meter = 1.09 yards = 3.28 feet = 39.4 inches 1 quart = 2 pints = 4 cups = 32 oz 1 yard = 3 feet = 36 inches = 0.914 meters 1 gallon = 4 quarts = 8 pints = 16 cups = 128 oz 1 cm = 0.39 inches 1 cup = 237 ml 1 inch = 2.54 cm 1 pint = 473 ml = 0.473 liters 1 rod = 16.5 ft 1 quart = 946 ml = 0.946 liters 1 sq. rod = 272.2 sq. ft 1 gallon = 3.78 liters = 3,785 ml 1 square meter = 10.76 square feet 1 acre-foot water = 326,000 gallons 1 cubic meter = 35.29 cubic feet = 1.30 cubic yards 0.1 inch water = 2717 gallons 1 inch layer of sand per acre = 134 cubic yards Mass Conversions Other Conversions 1 oz = 28.4 grams pt/A * 0.473 = liters/A 1 lb = 454 g = 0.454 kg pt/A * 1.167 = liters/ha 1 kg = 2.2 lb = 35.2 oz lb/A * 0.454 = kg/A lb/A * 1.12 = kg/ha gal/A * 3.78 = liter/A Temperature Conversions gal/A * 9.33 = liter/ha °F = (9/5 °C) + 32 (guesstimate: double °C, add 30) ton/A * 2,245 = kg/ha °C = 5/9 (°F-32) bbl/A * 0.112 = Mg/ha 2 g/ft * 0.958= bbl/A PESTICIDE STORAGE GUIDELINES Prepared by Hilary A.
    [Show full text]
  • Imperial Units
    Imperial units From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the post-1824 measures used in the British Empire and countries in the British sphere of influence. For the units used in England before 1824, see English units. For the system of weight, see Avoirdupois. For United States customary units, see Customary units . Imperial units or the imperial system is a system of units, first defined in the British Weights and Measures Act of 1824, later refined (until 1959) and reduced. The system came into official use across the British Empire. By the late 20th century most nations of the former empire had officially adopted the metric system as their main system of measurement. The former Weights and Measures office in Seven Sisters, London. Contents [hide] • 1 Relation to other systems • 2 Units ○ 2.1 Length ○ 2.2 Area ○ 2.3 Volume 2.3.1 British apothecaries ' volume measures ○ 2.4 Mass • 3 Current use of imperial units ○ 3.1 United Kingdom ○ 3.2 Canada ○ 3.3 Australia ○ 3.4 Republic of Ireland ○ 3.5 Other countries • 4 See also • 5 References • 6 External links [edit] Relation to other systems The imperial system is one of many systems of English or foot-pound-second units, so named because of the base units of length, mass and time. Although most of the units are defined in more than one system, some subsidiary units were used to a much greater extent, or for different purposes, in one area rather than the other. The distinctions between these systems are often not drawn precisely.
    [Show full text]
  • Appendix C. General Tables of Units of Measurement
    Handbook 44 – 2016 Appendix C – General Tables of Units of Measurement Table of Contents Appendix C. General Tables of Units of Measurement ........................................................ C-3 1. Tables of Metric Units of Measurement ..................................................................................................... C-3 Units of Length ............................................................................................................................................... C-3 Units of Area .................................................................................................................................................. C-3 Units of Liquid Volume .................................................................................................................................. C-4 Units of Volume ............................................................................................................................................. C-4 Units of Mass .................................................................................................................................................. C-4 2. Tables of U.S. Customary Units of Measurement ..................................................................................... C-4 Units of Length ............................................................................................................................................... C-4 Units of Area .................................................................................................................................................
    [Show full text]
  • Your Driving Costs 2020
    YOUR DRIVING COSTS 2020 How Much Does it Really Cost to Own a New Car? AAA Average Costs Per Mile Shown to the right are average per-mile costs for 2020 as determined by AAA, based on Miles per Year 10k 15k 20k the driving costs for nine vehicle categories Average Cost 82.36¢ 63.74¢ 54.57¢ weighted by sales. Detailed driving costs in each vehicle category are based on average costs for five top-selling 2020 models selected by AAA and can be found on pages 5 and 6. By category, they are: Î Small Sedan — Honda Civic, Hyundai Elantra, Î Minivan — Chrysler Pacifica, Dodge Grand Nissan Sentra, Toyota Corolla, Volkswagen Jetta Caravan, Kia Sedona, Honda Odyssey, Toyota Sienna Î Medium Sedan — Chevrolet Malibu, Ford Fusion, Honda Accord, Nissan Altima, Toyota Camry Î Pickup Truck — Chevrolet Silverado, Ford F-150, Î Large Sedan — Chevrolet Impala, Chrysler 300, Nissan Titan, Ram 1500 and Toyota Tundra Kia Cadenza, Nissan Maxima, Toyota Avalon Î Hybrid Car — Ford Fusion, Honda Insight, Î Small SUV — Chevrolet Equinox, Ford Escape, Hyundai Ioniq, Toyota Prius Liftback, Toyota Honda CR-V, Nissan Rogue, Toyota RAV4 RAV4 Î Medium SUV — Chevrolet Traverse, Ford Î Electric Car — BMW i3, Chevrolet Bolt, Hyundai Explorer, Honda Pilot, Jeep Grand Cherokee, Kona Electric, Nissan Leaf, Tesla Model 3 Toyota Highlander YOUR DRIVING COSTS | 2020 1 How to Calculate Your Own Driving Costs Start by figuring your gas cost per mile. To do this, you’ll need to keep track of your fueling habits over the course of one year. When your gas tank is full, write down the number of miles on your odometer.
    [Show full text]
  • DILUTION CHART Some Numbers Are Rounded up Or Down to Make Measuring Easier
    DILUTION CHART Some numbers are rounded up or down to make measuring easier PIC’s dilution ratios are written as parts. Therefore, when PIC’s label suggest a dilution ratio of 1-to-4 (1:4) that means 1 part product and 4 parts water. Some people calculate dilution by dividing by 4 (in this example), which is an incorrect answer. If you use 4 then you will actually be putting more chemical into your mixture than what PIC recommends. This chart will calculate the amount of product PIC recommends for several different container sizes. When calculating dilution, you should divide the total ounces (or gallons) you are making by the sum of the two numbers in the dilution ratio. For example: You want to make a 5 gallon solution to use in a mop bucket. You want it diluted 1-10 because that’s what the instructions indicate for your particular use. To calculate how much product to put into the mop bucket you take 5 gallons and divide it by the total number of parts, which is 11 (1 part product + 10 parts water). This gives you .45 gallons. To get the number of ounces you multiply this times 128, which equals 58.18 ounces. Therefore, you should measure approximately 58 ounces of product to put into your 5 gallon mop bucket, then fill with water. This will give you 5 gallons of RTU (Ready to Use) solution. (If you want to reduce foaming when mixing, see helpful hint at the bottom. To calculate a dilution ratio that is not listed, divide the number of ounces you are wanting to make by the sum of the two numbers in the ratio.
    [Show full text]
  • Imperial Units of Measure
    Imperial Units of Measure So far we have looked at metric units of measure, but you may have spotted that these are not the only units of measurement that we use. For example, you might buy your milk in pints, or measure a journey in miles. These are some examples of imperial units of measure, which we need to be familiar with. What is the imperial system? Do not panic! You will not be expected to remember the measurements needed to convert between metric and Take a look at this video to start your imperial units. You will always be given the numbers you investigation. need to convert. https://www.bbc.co.uk/bitesize/topics/z4nsgk7/ articles/zwbndxs See if you can find these units of measure being used anywhere around your house. You will spot this symbol being used when looking at imperial and metric measures. This symbol means ‘approximately’ or ‘approximately equal to’. It is hard to be exact when using two different systems of measurement and we often use rounding to make the calculations easier. Using Imperial Units of Measure Let’s start by looking at length I’m going to use a bar model to help me solve these conversions. If I know that 1 inch is approximately 2.5 centimetres, I think I’m going to need to be counting up in 2.5 10 cm 2.5 2.5 2.5 2.5 I have used the conversion given to me, to work out that 4inches is approximately 10cm. I know that 16 is 4 lots of 4 (4x4) So, I need to know what 4 lots of 10 is (4x10) 16 inches is approximately 40cm 15inches is 1 inch less than 16.
    [Show full text]