Annual Report ESO Staff Papers 2016

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report ESO Staff Papers 2016 ESO Staff Publications (2016) Peer-reviewed publications by ESO scientists The ESO Library maintains the ESO Telescope Bibliography (telbib) and is responsible for providing paper-based statistics. Publications in refereed journals based on ESO data (2016) can be retrieved through telbib: ESO data papers 2016. Access to the database for the years 1996 to present as well as an overview of publication statistics are available via http://telbib.eso.org and from the "Basic ESO Publication Statistics" document. Papers that use data from non-ESO telescopes or observations obtained with hosted telescopes are not included. The list below includes papers that are (co-)authored by ESO authors, with or without use of ESO data. It is ordered alphabetically by first ESO-affiliated author. Alatalo, K., Aladro, R., Nyland, K., Aalto, S., Bitsakis, T., C., Bohe, A., Bojtos, P., Bond, C., Bondu, F., Bonnand, Gallagher, J.S. & Lanz, L. 2016, After the Interaction: an R., Boom, B.A., Bork, R., Boschi, V., Bose, S., Efficiently Star-forming Molecular Disk in NGC 5195, Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P.R., ApJ, 830, 137 [ADS] Braginsky, V.B., Branchesi, M., Brau, J.E., Briant, T., Fajardo-Mendieta, W.G., Martínez-Oliveros, J.C., Alvarado- Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Gómez, J.D. & Calvo-Mozo, B. 2016, Impulsivity Brooks, A.F., Brown, D.A., Brown, D.D., Brown, N.M., Parameter for Solar Flares, ApJ, 818, 56 [ADS] Buchanan, C.C., Buikema, A., Bulik, T., Bulten, H.J., Alvarado-Gómez, J.D., Hussain, G.A.J., Cohen, O., Drake, Buonanno, A., Buskulic, D., Buy, C., Byer, R.L., J.J., Garraffo, C., Grunhut, J. & Gombosi, T.I. 2016, Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J.C., Simulating the environment around planet-hosting stars. Callister, T., Calloni, E., Camp, J.B., Cannon, K.C., Cao, I. Coronal structure, A&A, 588, A28 [ADS] J., Capano, C.D., Capocasa, E., Carbognani, F., Caride, Alvarado-Gómez, J.D., Hussain, G.A.J., Cohen, O., Drake, S., Diaz, J.C., Casentini, C., Caudill, S., Cavagliá, M., J.J., Garraffo, C., Grunhut, J. & Gombosi, T.I. 2016, Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C.B., Simulating the environment around planet-hosting stars. Baiardi, L.C., Cerretani, G., Cesarini, E., Chakraborty, II. Stellar winds and inner astrospheres, A&A, 594, A95 R., Chalermsongsak, T., Chamberlin, S.J., Chan, M., [ADS] Chao, S., Charlton, P., Chassande-Mottin, E., Chen, Galbany, L., Anderson, J.P., Rosales-Ortega, F.F., H.Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Kuncarayakti, H., Krühler, T., Sánchez, S.F., Falcón- Cho, H.S., Cho, M., Chow, J.H., Christensen, N., Chu, Barroso, J., Pérez, E., Maureira, J.C., Hamuy, M., Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J.A., González-Gaitán, S., Förster, F. & Moral, V. 2016, Cleva, F., Coccia, E., Cohadon, P.-F., Colla, A., Collette, Characterizing the environments of supernovae with C.G., Cominsky, L., Constancio, M.J., Conte, A., Conti, MUSE, MNRAS, 455, 4087 [ADS] L., Cook, D., Corbitt, T.R., Cornish, N., Corsi, A., Sánchez-Menguiano, L., Sánchez, S.F., Kawata, D., Cortese, S., Costa, C.A., Coughlin, M.W., Coughlin, Chemin, L., Pérez, I., Ruiz-Lara, T., Sánchez-Blázquez, S.B., Coulon, J.-P., Countryman, S.T., Couvares, P., P., Galbany, L., Anderson, J.P., Grand, R.J.J., Cowan, E.E., Coward, D.M., Cowart, M.J., Coyne, D.C., Minchev, I. & Gómez, F.A. 2016, Evidence of Ongoing Coyne, R., Craig, K., Creighton, J.D.E., Cripe, J., Radial Migration in NGC 6754: Azimuthal Variations of Crowder, S.G., Cumming, A., Cunningham, L., Cuoco, the Gas Properties, ApJ, 830, L40 [ADS] E., Dal Canton, T., Danilishin, S.L., D’Antonio, S., Kuncarayakti, H., Maeda, K., Anderson, J.P., Hamuy, M., Danzmann, K., Darman, N.S., Dattilo, V., Dave, I., Nomoto, K., Galbany, L. & Doi, M. 2016, Evolving into a Daveloza, H.P., Davier, M., Davies, G.S., Daw, E.J., Day, remnant: optical observations of SN 1978K at three R., DeBra, D., Debreczeni, G., Degallaix, J., De decades, MNRAS, 458, 2063 [ADS] Laurentis, M., Deléglise, S., Del Pozzo, W., Denker, T., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Dent, T., Dereli, H., Dergachev, V., DeRosa, R.T., De Acernese, F., Ackley, K., Adams, C., Adams, T., Rosa, R., DeSalvo, R., Dhurandhar, S., Díaz, M.C., Di Addesso, P., Adhikari, R.X., Adya, V.B., Affeldt, C., Fiore, L., Di Giovanni, M., Di Lieto, A., Di Pace, S., Di Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Palma, I., Di Virgilio, A., Dojcinoski, G., Dolique, V., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, Donovan, F., Dooley, K.L., Doravari, S., Douglas, R., P.A., Anderson, S.B., Anderson, W.G., Arai, K., Araya, Downes, T.P., Drago, M., Drever, R.W.P., Driggers, M.C., Arceneaux, C.C., Areeda, J.S., Arnaud, N., Arun, J.C., Du, Z., Ducrot, M., Dwyer, S.E., Edo, T.B., K.G., Ascenzi, S., Ashton, G., Ast, M., Aston, S.M., Edwards, M.C., Effler, A., Eggenstein, H.-B., Ehrens, P., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, Eichholz, J., Eikenberry, S.S., Engels, W., Essick, R.C., P., Bader, M.K.M., Baker, P.T., Baldaccini, F., Ballardin, Etzel, T., Evans, M., Evans, T.M., Everett, R., G., Ballmer, S.W., Barayoga, J.C., Barclay, S.E., Barish, Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, B.C., Barker, D., Barone, F., Barr, B., Barsotti, L., X., Fang, Q., Farinon, S., Farr, B., Farr, W.M., Favata, Barsuglia, M., Barta, D., Barthelmy, S., Bartlett, J., M., Fays, M., Fehrmann, H., Fejer, M.M., Ferrante, I., Bartos, I., Bassiri, R., Basti, A., Batch, J.C., Baune, C., Ferreira, E.C., Ferrini, F., Fidecaro, F., Fiori, I., Fiorucci, Bavigadda, V., Bazzan, M., Behnke, B., Bejger, M., Bell, D., Fisher, R.P., Flaminio, R., Fletcher, M., Fournier, J.- A.S., Bell, C.J., Berger, B.K., Bergman, J., Bergmann, D., Franco, S., Frasca, S., Frasconi, F., Frei, Z., Freise, G., Berry, C.P.L., Bersanetti, D., Bertolini, A., A., Frey, R., Frey, V., Fricke, T.T., Fritschel, P., Frolov, Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I.A., V.V., Fulda, P., Fyffe, M., Gabbard, H.A.G., Gair, J.R., Billingsley, G., Birch, J., Birney, R., Biscans, S., Bisht, Gammaitoni, L., Gaonkar, S.G., Garufi, F., Gatto, A., A., Bitossi, M., Biwer, C., Bizouard, M.A., Blackburn, Gaur, G., Gehrels, N., Gemme, G., Gendre, B., Genin, J.K., Blair, C.D., Blair, D.G., Blair, R.M., Bloemen, S., E., Gennai, A., George, J., Gergely, L., Germain, V., Bock, O., Bodiya, T.P., Boer, M., Bogaert, G., Bogan, Ghosh, A., Ghosh, S., Giaime, J.A., Giardina, K.D., Giazotto, A., Gill, K., Glaefke, A., Goetz, E., Goetz, R., D., Normandin, M.E.N., Nuttall, L.K., Oberling, J., Gondan, L., González, G., Castro, J.M.G., Gopakumar, Ochsner, E., O’Dell, J., Oelker, E., Ogin, G.H., Oh, J.J., A., Gordon, N.A., Gorodetsky, M.L., Gossan, S.E., Oh, S.H., Ohme, F., Oliver, M., Oppermann, P., Oram, Gosselin, M., Gouaty, R., Graef, C., Graff, P.B., Granata, R.J., O’Reilly, B., O’Shaughnessy, R., Ottaway, D.J., M., Grant, A., Gras, S., Gray, C., Greco, G., Green, Ottens, R.S., Overmier, H., Owen, B.J., Pai, A., Pai, A.C., Groot, P., Grote, H., Grunewald, S., Guidi, G.M., S.A., Palamos, J.R., Palashov, O., Palliyaguru, N., Guo, X., Gupta, A., Gupta, M.K., Gushwa, K.E., Palomba, C., Pal-Singh, A., Pan, H., Pankow, C., Gustafson, E.K., Gustafson, R., Hacker, J.J., Hall, B.R., Pannarale, F., Pant, B.C., Paoletti, F., Paoli, A., Papa, Hall, E.D., Hammond, G., Haney, M., Hanke, M.M., M.A., Paris, H.R., Parker, W., Pascucci, D., Pasqualetti, Hanks, J., Hanna, C., Hannam, M.D., Hanson, J., A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Hardwick, T., Haris, K., Harms, J., Harry, G.M., Harry, Z., Pearlstone, B.L., Pedraza, M., Pedurand, R., I.W., Hart, M.J., Hartman, M.T., Haster, C.-J., Haughian, Pekowsky, L., Pele, A., Penn, S. & Anderson, J. 2016, K., Heidmann, A., Heintze, M.C., Heitmann, H., Hello, Localization and Broadband Follow-up of the P., Hemming, G., Hendry, M., Heng, I.S., Hennig, J., Gravitational-wave Transient GW150914, ApJ, 826, L13 Heptonstall, A.W., Heurs, M., Hild, S., Hoak, D., Hodge, [ADS] K.A., Hofman, D., Hollitt, S.E., Holt, K., Holz, D.E., Prieto, J.L., Krühler, T., Anderson, J.P., Galbany, L., Hopkins, P., Hosken, D.J., Hough, J., Houston, E.A., Kochanek, C.S., Aquino, E., Brown, J.S., Dong, S., Howell, E.J., Hu, Y.M., Huang, S., Huerta, E.A., Huet, Förster, F., Holoien, T.W.S., Kuncarayakti, H., Maureira, D., Hughey, B., Husa, S., Huttner, S.H., Huynh-Dinh, T., J.C., Rosales-Ortega, F.F., Sánchez, S.F., Shappee, Idrisy, A., Indik, N., Ingram, D.R., Inta, R., Isa, H.N., Isac, B.J. & Stanek, K.Z. 2016, MUSE Reveals a Recent J.-M., Isi, M., Islas, G., Isogai, T., Iyer, B.R., Izumi, K., Merger in the Post-starburst Host Galaxy of the TDE Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., ASASSN-14li, ApJ, 830, L32 [ADS] Jawahar, S., Jiménez-Forteza, F., Johnson, W.W., Takáts, K., Pignata, G., Bersten, M., Rojas Kaufmann, M.L., Jones, D.I., Jones, R., Jonker, R.J.G., Ju, L., Kalaghatgi, Anderson, J.P., Folatelli, G., Hamuy, M., Stritzinger, M., C.V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, Haislip, J.B., LaCluyze, A.P., Moore, J.P.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Arxiv:Astro-Ph/0605277V1 10 May 2006 Nttt Ftcnlg O NASA for Technology of Institute .H Chen H
    Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks1 C. H. Chen2,3, B. A. Sargent4, C. Bohac4, K. H. Kim4, E. Leibensperger5, M. Jura6, J. Najita2, W. J. Forrest4, D. M. Watson4, G. C. Sloan7, L. D. Keller5 ABSTRACT We have obtained Spitzer Space Telescope IRS 5.5 - 35 µm spectra of 59 main sequence stars that possess IRAS 60 µm excess. The spectra of five objects possess spectral features that are well-modeled using micron-sized grains and silicates with crystalline mass fractions 0% - 80%, consistent with T-Tauri and Herbig AeBe stars. With the exception of η Crv, these objects are young with ages 50 Myr. Our fits require the presence of a cool black body continuum, ≤ Tgr = 80 - 200 K, in addition to hot, amorphous and crystalline silicates, Tgr = 290 - 600 K, suggesting that multiple parent body belts are present in some debris disks, analogous to the asteroid and Kuiper belts in our solar system. The spectra for the majority of objects are featureless, suggesting that the emitting grains probably have radii a > 10 µm. We have modeled the excess continua using a continuous disk with a uniform surface density distribution, expected if Poynting-Robertson and stellar wind drag are the dominant grain removal processes, and using a single temperature black body, expected if the dust is located in a narrow ring around the star. The IRS spectra of many objects are better modeled with a single temperature black body, suggesting that the disks possess inner holes. The distribution of grain temperatures, based on our black body fits, peaks at Tgr = 110 - 120 K.
    [Show full text]
  • Ioptron AZ Mount Pro Altazimuth Mount Instruction
    ® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description .......................................................................................................................
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015
    THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015 ****************************************************************************************************************************** AUSTRALIAN CRATER HIDDEN STARS A team of geophysicists has found the twin scars of Scientists found a bright nebula around the Milky the impacts of a huge meteorite that broke in two Way”s nearby star 48 Librae in a patch of sky that moments before it slammed into the Earth millions of appears totally black in visible light but appears in infra- years ago in central Australia. It is the largest impact red. They said: "This cluster is probably a group of very zone ever found on Earth – 400 kilometers wide. young stars forming inside a previously undiscovered “YELLOW BALLS” molecular cloud, and the 48 Librae nebula apparently is Citizen scientists recently found a new class of due to a huge cloud of dust around the star.” curiosities that had gone unrecognized before: yellow HUBBLE IS 25! balls. Many "citizen scientist" projects make up the Hubble, the first telescope to revolutionize modern Zooniverse website which relies on “crowd-sourcing” to astronomy and change our view of the universe by help process scientific data. offering glimpses of distant galaxies, has marked its 25th The rounded features are not actually yellow but year in space. A senior scientist said: "Hubble absolutely appear that way in the infrared images the telescope has changed the way humans look at the universe and sends to Earth. See: http://www.spxdaily.com/images- our place in it." lg/yellow-balls-process-star-formation-lg.jpg A DISTANT PLANET and http://www.zooniverse.org The Spitzer Space Telescope teamed up with CANADA’S NEW TMT TELESCOPE Poland’s OGLE telescope in Chile to find a remote gas Canada and an international partnership are funding planet about 13,000 light-years away, making it one of the construction of the Thirty Meter Telescope - the top the most distant planets known.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2017
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2017 Tatranská Lomnica január 2018 Obsah osnovy Správy o činnosti organizácie SAV za rok 2017 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2017 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica http://www.ta3.sk Tel.: 052/7879111 Fax: 052/4467656 E-mail: [email protected] Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • On the Detection of Exoplanets Via Radial Velocity Doppler Spectroscopy
    The Downtown Review Volume 1 Issue 1 Article 6 January 2015 On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy Joseph P. Glaser Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Astrophysics and Astronomy Commons How does access to this work benefit ou?y Let us know! Recommended Citation Glaser, Joseph P.. "On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy." The Downtown Review. Vol. 1. Iss. 1 (2015) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol1/iss1/6 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Glaser: Detection of Exoplanets 1 Introduction to Exoplanets For centuries, some of humanity’s greatest minds have pondered over the possibility of other worlds orbiting the uncountable number of stars that exist in the visible universe. The seeds for eventual scientific speculation on the possibility of these "exoplanets" began with the works of a 16th century philosopher, Giordano Bruno. In his modernly celebrated work, On the Infinite Universe & Worlds, Bruno states: "This space we declare to be infinite (...) In it are an infinity of worlds of the same kind as our own." By the time of the European Scientific Revolution, Isaac Newton grew fond of the idea and wrote in his Principia: "If the fixed stars are the centers of similar systems [when compared to the solar system], they will all be constructed according to a similar design and subject to the dominion of One." Due to limitations on observational equipment, the field of exoplanetary systems existed primarily in theory until the late 1980s.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Deep ALMA Search for CO Gas in the HD 95086 Debris Disc
    MNRAS 482, 3443–3452 (2019) doi:10.1093/mnras/sty2993 Advance Access publication 2018 November 3 Deep ALMA search for CO gas in the HD 95086 debris disc Mark Booth ,1‹ Luca Matra` ,2 Kate Y. L. Su,3,4 Quentin Kral ,5,6 Antonio S. Hales,7,8 William R. F. Dent,7 A. Meredith Hughes,9 Meredith A. MacGregor,10 Torsten Lohne¨ 1 and David J. Wilner2 1Astrophysikalisches Institut und Universitatssternwarte,¨ Friedrich-Schiller-Universitat¨ Jena, Schillergaßchen¨ 2-3, D-07745 Jena, Germany 2Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721, USA 4 Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 106, Taiwan Downloaded from https://academic.oup.com/mnras/article/482/3/3443/5159484 by guest on 30 September 2021 5Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6LESIA, Observatoire de Paris, Universite´ PSL, CNRS, Sorbonne Universite,´ Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 7Joint ALMA Observatory, Alonso de Cordova´ 3107, Vitacura 763-0355, Santiago, Chile 8National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 9Department of Astronomy, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA 10Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA Accepted 2018 October 31. Received 2018 October 30; in original form 2018 July 18 ABSTRACT One of the defining properties of debris discs compared to protoplanetary discs used to be their lack of gas, yet small amounts of gas have been found around an increasing number of debris discs in recent years.
    [Show full text]
  • Bright Emissaries 2014:London:Ontario:Canada:V2.3 [August 11, 2014] 1
    bright emissaries 2014:london:ontario:canada:v2.3 [August 11, 2014] 1 Bright Emissaries Be Stars As Messengers of Star-Disk Physics August 11-13th, 2014 London, Ontario, Canada v2.3 August 11, 2014 bright emissaries 2014:london:ontario:canada:v2.3 [August 11, 2014] 2 To the scientific career of Mike Marlborough. To the memory of Stan Stefl˘ and Olivier Chesneau. bright emissaries 2014:london:ontario:canada:v2.3 [August 11, 2014] 3 Contents Important information... 4 Western campus and map 6 Talk schedule............ 8 Posters................... 11 Invited talk abstracts..... 12 Contributed talk abstracts 18 Poster abstracts.......... 31 Local guide .............. 38 bright emissaries 2014:london:ontario:canada:v2.3 [August 11, 2014] 4 Important Information • Location: All invited and contributed talks will be held in Room 106 of the Physics & Astronomy Building (PAB). See the discussion on page 6 and the map on page 7 for an overview of the Western Campus. The poster sessions and coffee breaks will be held in the first floor atrium of the PAB. • Opening Reception: There is an informal Opening Reception on Sunday, August 10th, from 7-9pm in the first floor atrium of the PAB. You should find a drink ticket in your registration package. There will also be hors d’oeuvres and a cash bar. • Registration: You can register for the conference at any time during the Opening Reception on Sunday and between 8am and 9am on the first full day of the conference. • Internet Access: Western is a member of eduroam (www.eduroam.org). If your institution is also a participant, you should be able to use your home institution login credentials to access our local wireless network.
    [Show full text]
  • Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected
    Draft version February 28, 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 SULFUR HAZES IN GIANT EXOPLANET ATMOSPHERES: IMPACTS ON REFLECTED LIGHT SPECTRA Peter Gao1,2,3, Mark S. Marley, and Kevin Zahnle NASA Ames Research Center Moffett Field, CA 94035, USA Tyler D. Robinson4,5 Department of Astronomy and Astrophysics University of California Santa Cruz Santa Cruz, CA 95064, USA Nikole K. Lewis Space Telescope Science Institute Baltimore, MD 21218, USA 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 2NASA Postdoctoral Program Fellow [email protected] 4Sagan Fellow 5NASA Astrobiology Institute’s Virtual Planetary Laboratory ABSTRACT Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of WFIRST, a planned NASA space telescope. For temperate (250 K < Teq < 700 K) Jupiter–mass planets, photochemical destruction of H2S results in the production of 1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, ∼ will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 µm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to 0.7 due to scattering. ∼ Strong absorption by the haze shortward of 0.4 µm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]