Problems and Solutions in Organic Chemistry Is Primar- of Problems Included in Each Chapter Is Given Here

Total Page:16

File Type:pdf, Size:1020Kb

Problems and Solutions in Organic Chemistry Is Primar- of Problems Included in Each Chapter Is Given Here Problems and Solutions in Organic ChemistryPress Subrata Sen Gupta Formerly, Reader in Chemistry R.P.M.University College, West Bengal Oxford © Oxford University Press. All rights reserved. PSOC_FM.indd 1 12/30/2015 5:30:48 PM 3 Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries. Published in India by Oxford University Press YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India © Oxford University Press 2014 The moral rights of the author/s have been asserted. First published in 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this work in any other form and you must impose this same condition on any Pressacquirer. ISBN-13: 978-0-19-945546-1 ISBN-10: 0-19-945546-5 Typeset in Times New RoamnPSMT by Welkyn Software Solutions Pvt Ltd Printed in India by Rajkamal Electric Press, Kundli, Haryana Third-party website addresses mentioned in this book are provided by Oxford University Press in good faith and for information only. Oxford University Press disclaims Universityany responsibility for the material contained therein. Oxford © Oxford University Press. All rights reserved. PSOC_FM.indd 2 12/30/2015 5:30:49 PM Preface Though chemical compounds are visible to the naked eye, discussed, students would get specific information on the their constituent atoms and bonds are invisible even under a types of reactions these two different classes of carbonyl very powerful microscope. When one tries to visualize the compounds take part in. Such an approach to learning formation of a compound, one has to depend on the infor- the subject is more pragmatic as it helps readers get mation available in related literature, confirmed through acquainted with the relevant reactions within a class of time-tested experiments. Therefore, when a student comes organic compounds. across a new problem, the solution can only be rationalized as a ‘plausible’ explanation or by concluding that ‘results KEY FEATURES have to be confirmed by experiments and investigations’. • Problems on the nomenclature of the different classes Organic chemistry is a mind-boggling field of chemistry, of organic compounds based on IUPAC rules, and in the sense that nature has produced thousands of organic the answers to these molecules with unimaginable complexities. Fascinated by • A plethora of problems on the classes of compounds this area of study, chemists are observing and following with plausible mechanisms and rationalization, nature to synthesize many new compounds in their labora- where necessaryPress tories, many of which have changed our lifestyle in unim- • Illustrative reaction mechanisms through well-drawn aginable ways. diagrams with supportive explanations and com- Young learners must realize that to excel in any science ments wherever needed course, they must develop the habit of solving problems. • Problems on stereochemistry, spectroscopy, and per- To gain confidence in this, they would initially need the icyclic reactions assistance of books that contain a large number of solved • Over 1500 solved problems addressing various topics problems. It is with this objective in mind that Problems on the subject and Solutions in Organic Chemistry was conceived. The • Includes 700 chapter-end exercise problems to aid book is designed as a self-study material, to expose stu- self-evaluation dents to the various facets of organic chemistry. University CONTENTS AND COVERAGE ABOUT THE BOOK The book has 21 chapters. A short description of the nature Problems and Solutions in Organic Chemistry is primar- of problems included in each chapter is given here. ily written for undergraduate students who have opted for Chapter 1, Nomenclature of Organic Compounds, provides an Honours course in chemistry. It will also be useful for problems on the naming of various aliphatic, alicyclic, aro- students pursuing postgraduation in chemistry and those matic, fused polynuclear, spiro, heterocyclic, and bridged preparing for competitive examinationsOxford such as the Joint compounds. The nomenclature of many unique unsatu- Admission Test for Masters (JAM), National Eligibility rated aliphatic compounds and compounds with a variety Test (CSIR–UGC NET), and Graduate Aptitude Test in of functional groups have been discussed. End-chapter Engineering (GATE). exercises discussing certain interesting chemical structures Most problems in each chapter have been discussed have also been included. on the basis of traditional functional groups present in organic compounds. This will help students get an idea of Chapter 2, Physical Organic Chemistry, deals with prob- the types of problems based on a particular class of com- lems based on the concepts and theories in organic chemis- pounds. For example, alcohols can participate in elimi- try, such as acid–base reactions, dipole moments, reaction nation reactions, etherification reactions, esterification rates, tautomerism, reaction kinetics, and aromaticities. reactions, and are reagents in nucleophilic substitutions Chapter 3, Stereochemistry, includes a large number of as well. Therefore, if we separately discuss the problems problems on various aspects of stereochemistry involving on alcohols, we can get an idea of the different types of organic molecules. Problems on both static and dynamic reactions these compounds take part in. Similarly, the stereochemistry have been demonstrated. properties of aliphatic carbonyl compounds and aromatic carbonyl compounds differ in many reactions. Therefore, Chapter 4, Aliphatic and Alicyclic Hydrocarbons and if problems on these compounds are individually their Halides, elucidates problems on both saturated and © Oxford University Press. All rights reserved. PSOC_FM.indd 3 12/30/2015 5:30:55 PM iv Preface unsaturated compounds in addition to those on aliphatic Chapter 16, Carbohydrates, has problems dealing with and alicyclic hydrocarbons. naturally occurring typical monosaccharides, disaccha- rides, and polysaccharides. Chapter 5, Alcohols and Ethers, throws light on typical problems on alcohols and aliphatic ethers. Chapter 17, Amino Acids, Proteins, and Nucleic Acids, deals with a variety of problems on important biomole- Chapter 6, Aliphatic Carbonyl Compounds, deals with a cules such as amino acids, proteins, and nucleic acids. wide array of interesting problems on aliphatic aldehydes and ketones. Chapter 18, Molecular Rearrangements, analyses prob- lems associated with molecular rearrangements encom- Chapter 7, Aliphatic Acids and their Derivatives, describes passing all the classes of organic compounds. problems on aliphatic acids and their derivatives, such as esters, amides, and acid halides. Chapter 19, Conversions and Syntheses of Organic Compounds, gives a clear picture on the mechanisms Chapter 8, Aliphatic and Alicyclic Amines, Nitriles, related to conversions among organic molecules and also Isocyanides, Ylides, Diazocompounds, and Organometallic talks about the synthesis of organic molecules from typical Compounds, discusses a host of interesting problems on compounds and reagents. these classes of compounds. Chapter 20, Constitutional Problems on Organic Chapter 9, Aromatic Carbonyl Compounds, explores the Compounds, has a diverse range of problems on the iden- typical problems associated with these compounds. tification of compounds based on a sequence of reactions. Chapter 10, Aromatic Acids, Amines, Nitro-compounds, Chapter 21, Miscellaneous Problems, presents a large num- and Diazo-compounds, comprises a large number of prob- ber of interesting problemsPress based on the different classes of lems on these staggering classes of compounds. organic compounds and a variety of organic reactions we Chapter 11, Phenolic Compounds, Benzoquinones, and encounter in organic chemistry. Aromatic Ethers, deals with specific and interesting prob- Appendix A, Abbreviations of a Few Reagents Used in lems on these compounds to understand their reactions Chemical Literature, lists out the abbreviations and the better. corresponding chemical structures of some frequently used reagents in organic reactions. Chapter 12, Benzenes, Polynuclear and Alicylic Hydrocarbons, explains problems on benzene and substi- Appendix B, Reducing and Oxidizing Agents Commonly tuted benzenes, polynuclear aromatic hydrocarbons, and Used in Organic Chemistry, lays emphasis on the various some additional problems on alicyclic compounds, which reducing and oxidizing agents, along with their chemical have not been discussed in Chapter 4. Universitycomposition, preferred solvent, and reaction mixture. Chapter 13, Pericyclic Reactions, deals with problems on ACKNOWLEDGEMENTS this special class of organic reactions. These include reac- I express my deepest gratitude to Oxford University Press tions such as electrocyclic reaction, cycloaddition reaction, India for accepting this book for publication. I am particu- sigmatropic reaction,
Recommended publications
  • Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
    Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N.
    [Show full text]
  • The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of Â-Lactams Andrew E
    Published on Web 00/00/0000 The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of â-Lactams Andrew E. Taggi, Ahmed M. Hafez, Harald Wack, Brandon Young, Dana Ferraris, and Thomas Lectka* Contribution from the Department of Chemistry, Johns Hopkins UniVersity, 3400 North Charles Street, Baltimore, Maryland 21218 Received February 5, 2002 Abstract: We report practical methodology for the catalytic, asymmetric synthesis of â-lactams resulting from the development of a catalyzed reaction of ketenes (or their derived zwitterionic enolates) and imines. The products of these asymmetric reactions can serve as precursors to a number of enzyme inhibitors and drug candidates as well as valuable synthetic intermediates. We present a detailed study of the mechanism of the â-lactam forming reaction with proton sponge as the stoichiometric base, including kinetics and isotopic labeling studies. Stereochemical models based on molecular mechanics (MM) calculations are also presented to account for the observed stereoregular sense of induction in our reactions and to provide a guidepost for the design of other catalyst systems. Introduction this structural motif a worthwhile goal for the synthetic organic 10 The clinical relevance of â-lactams continues to expand at a chemist, thus the synthesis of these nonantibiotic â-lactams surprising rate. Although their use as antibiotics is being will be the focus of this contribution. While considerable effort compromised to some extent by bacterial resistance pressures,1 has been put into synthetic methodology to construct the basic recently â-lactams (especially nonnatural ones) have achieved â-lactam skeleton, there have been few general methods many important nonantibiotic uses.
    [Show full text]
  • Dimethyl Sulfoxide Oxidation of Primary Alcohols
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1966 Dimethyl Sulfoxide Oxidation of Primary Alcohols Carmen Vargas Zenarosa Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Zenarosa, Carmen Vargas, "Dimethyl Sulfoxide Oxidation of Primary Alcohols" (1966). Master's Theses. 4374. https://scholarworks.wmich.edu/masters_theses/4374 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIMETHYL SULFOXIDE OXIDATION OF PRIMARY ALCOHOLS by Carmen Vargas Zenarosa A thesis presented to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan August, 1966 ACKNOWLEDGMENTS The author wishes to express her appreciation to the members of her committee, Dr, Don C. Iffland and Dr. Donald C, Berndt, for their helpful suggestions and most especially to Dr, Robert E, Harmon for his patience, understanding, and generous amount of time given to insure the completion of this work. Appreciation is also expressed for the assistance given by her. colleagues. The author acknowledges the assistance given by the National Institutes 0f Health for this research project. Carmen Vargas Zenarosa ii TABLE OF CONTENTS Page
    [Show full text]
  • Part 1 : Studies of the Synthesis of Bicyclo[2.2.0] Hexane And
    PART 1. STUDIES OF THE SYNTHESIS OF B1CYCLO[2.2.0]HEXANE AND CERTAIN REACTIONS OF 3-BENZHYDRYLCYCLOPENTENE-4-CARBOXYL1C ACID PART 11. ATTEMPTED SYNTHESES OF BENZCYCL0BUTENE-3,4-D10NE AND BENZCYCLOBUTENE by ALBERT C. KOVELESKY B. S., Pennsylvania State University, 1958 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemistry KANSAS STATE UNIVERSITY Manhattan, Kansas 1962 This work is dedicated to my parents, Mr, and Mrs, Albert J. Kovelesky, for their patience, encouragement and financial assistance which made this work possible. ii ACKNOV/LEDGEMENT The author wishes to express his sincere gratitude to Dr. R, N, McDonald, for his competent supervision and continued encouragement throughout this in- vestigation. The author also vdshes to express his thanks to the other members of the graduate faculty and to his graduate student colleagues for the many helpful discussions and suggestions. Special thanks are extended to Kansas State Iftiiversity and to the National Science Foundation for the financial aid that was received during this investi- gation. iii TABLE OF CONTENTS Page PART I: STUDIES OF THE SYNTHESIS OF BICYCLO [j.Z.oJ HEXANE AND CERTAIN REACTIONS OF 3-BENZHYDRYLCYCLOPENTENE-2»- CARBOXYLIC ACID INTRODUCTION 1 OBJECTIVES OF THIS INVESTIGATION 3 DISCUSSION OF EXPERIMENTAL RESULTS k Proposed Route to Bicyclo j_2.2.oJ hexane ... k Elimination Studies of 3-Benzhydrylcyclopentene-2t-carboxylic Acid. .•.•.•.«•*. .*.. 8 SUMI4ARY 12 EXPERIMENTAL 18 Cyclopentadiene 18 Ketene ....«..*• • 18 Bicyclo [3»2.0j hept-2-en-6-one 18 Bicyclo [_3. 2. o] hept-2-ene 19 Oxidation of Bicyclo j_3.2.oJ hept-2-ene 20 1.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]
  • University Micrdrilms International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]
  • Chemical Redox Agents for Organometallic Chemistry
    Chem. Rev. 1996, 96, 877−910 877 Chemical Redox Agents for Organometallic Chemistry Neil G. Connelly*,† and William E. Geiger*,‡ School of Chemistry, University of Bristol, U.K., and Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125 Received October 3, 1995 (Revised Manuscript Received January 9, 1996) Contents I. Introduction 877 A. Scope of the Review 877 B. Benefits of Redox Agents: Comparison with 878 Electrochemical Methods 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 The authors (Bill Geiger, left; Neil Connelly, right) have been at the forefront of organometallic electrochemistry for more than 20 years and have had 1. Radical Cations 891 a long-standing and fruitful collaboration. 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich 894 Neil Connelly took his B.Sc. (1966) and Ph.D. (1969, under the direction Compounds of Jon McCleverty) degrees at the University of Sheffield, U.K. Post- 4. Quinones 895 doctoral work at the Universities of Wisconsin (with Lawrence F. Dahl) 5. Other Organic Oxidants 896 and Cambridge (with Brian Johnson and Jack Lewis) was followed by an appointment at the University of Bristol (Lectureship, 1971; D.Sc. degree, III. Reductants 896 1973; Readership 1975). His research interests are centered on synthetic A. Inorganic 896 and structural studies of redox-active organometallic and coordination 1.
    [Show full text]
  • Novel Non-Aqueous Symmetric Redox Materials for Redox Flow Battery Energy Storage
    Novel Non-Aqueous Symmetric Redox Materials for Redox Flow Battery Energy Storage Craig G. Armstrong This dissertation is submitted for the degree of Doctor of Philosophy January 2020 Department of Chemistry The search for ‘electrochemically promiscuous’ redox materials… - Craig Armstrong, 2017 ii Declaration This thesis has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Many of the ideas in this thesis were the product of discussion with my supervisor Dr Kathryn E. Toghill. Dr Ross W. Hogue assisted in the acquisition of experimental results in chapters 4, 6 and 7. He is also credited for co-writing [3], of which Chapter 6 is based, and is a second author on [4]. Excerpts of this thesis have been published in the following academic publications [1–4]. [1] C.G. Armstrong, K.E. Toghill, Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification, J. Power Sources. 349 (2017) 121–129. doi:10.1016/j.jpowsour.2017.03.034. [2] C.G. Armstrong, K.E. Toghill, Stability of molecular radicals in organic non- aqueous redox flow batteries: A mini review, Electrochem. Commun. 91 (2018) 19–24. doi:10.1016/j.elecom.2018.04.017. [3] R. Hogue, C. Armstrong, K. Toghill, Dithiolene Complexes of First Row Transition Metals for Symmetric Non-Aqueous Redox Flow Batteries, ChemSusChem. (2019) 1–11. doi:10.1002/cssc.201901702.
    [Show full text]
  • Organic Chemistry Section: Summary of Activities
    ^ Mmm. Bldg. Wary, E-01 1970 DEC 9 NBS TECHNICAL NOTE 547 Organic Chemistry Section: Summary of Activities July 1969 to June 1970 NATIONAL BUREAU QF STANBAtW! UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director Ls-47u >• -i. NBS TECHNICAL NOTE 547 ISSUED NOVEMBER 1970 Nat. Bur. Stand. (U.S.), Tech. Note 547, 134 pages (Nov. 1970) CODEN:: NBTNA Organic Chemistry Section: Summary of Activities July 1969 to June 1970 Robert Schaffer, Editor Organic Chemistry Section Analytical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 i? w j y*. * V,, ov NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C, 20402. (Order by SD Catalog No. C 13.46:547), Price $1.25. FOREWORD The Analytical Chemistry Division was established as a separate division at the National Bureau of Standards on September 1, 1963, and became part of the Institute for Materials Research in the February 1, 196*1, reorganization. It consists at present of nine sections and about 100 tech- nical personnel encompassing some 60 different analytical competences from activation analysis and atomic absorption to vacuum fusion and x-ray spectroscopy. These competences, and in turn the sections which they comprise, are charged with research at the forefront of analysis as well as awareness of the practical sample, be it standard reference material or service analysis.
    [Show full text]
  • Thermal [2+2]-Cycloadditions of Diphenylketene with Aryl- and Hetaryl-Substituted Thioketones
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Thermal [2+2]-cycloadditions of diphenylketene with aryl- and hetaryl-substituted thioketones Mlostoń, Grzegorz ; Urbaniak, Katarzyna ; Szychowska, Anna ; Linden, Anthony ; Heimgartner, Heinz Abstract: The reaction of diphenylketene (1) with aryl- and hetaryl-substituted thioketones (2) gave the corresponding 3,3,4,4-tetraarylthietan-2-ones (3) in good yields. Remarkably, the reactions with bis- hetaryl-substituted thioketones occurred significantly faster compared with those involving the bis-aryl- substituted thioketones. The structure of compound 3c has been established by X-ray crystallography. DOI: https://doi.org/10.3987/COM-14-S(K)56 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-97976 Journal Article Accepted Version Originally published at: Mlostoń, Grzegorz; Urbaniak, Katarzyna; Szychowska, Anna; Linden, Anthony; Heimgartner, Heinz (2015). Thermal [2+2]-cycloadditions of diphenylketene with aryl- and hetaryl-substituted thioketones. Heterocycles, 90(1):529-539. DOI: https://doi.org/10.3987/COM-14-S(K)56 HETEROCYCLES, Vol. 90, No. 1, 2014, pp. -. © 2014 The Japan Institute of Heterocyclic Chemistry Received, 29th June, 2014, Accepted, 29th July, 2014, Published online, 6th August, 2014 DOI: 10.3987/COM-14-S(K)56 THERMAL [2+2]-CYCLOADDITIONS OF DIPHENYLKETENE WITH ARYL- AND HETARYL-SUBSTITUTED THIOKETONES Grzegorz Mlosto!,a* Katarzyna Urbaniak,a Anna Szychowska,1,a Anthony Linden,b and Heinz Heimgartnerb* a: University of !ód", Department of Organic and Applied Chemistry, Tamka 12, PL-91-403 !ód", Poland: e-mail: [email protected] b: University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; e-mail: [email protected] Dedicated to Professor Dr.
    [Show full text]
  • Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Stephen Ducharme Publications Research Papers in Physics and Astronomy 2013 Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry Donna A. Kunkel University of Nebraska-Lincoln, [email protected] James Hooper State University of New York at Buffalo Scott Simpson State University of New York at Buffalo Sumit Beniwal University of Nebraska–Lincoln, [email protected] Katie L. Morrow California State University, San Bernardino See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/physicsducharme Part of the Atomic, Molecular and Optical Physics Commons, and the Condensed Matter Physics Commons Kunkel, Donna A.; Hooper, James; Simpson, Scott; Beniwal, Sumit; Morrow, Katie L.; Smith, Douglas C.; Cousins, Kimberly; Ducharme, Stephen; Zurek, Eva; and Enders, Axel, "Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry" (2013). Stephen Ducharme Publications. 92. https://digitalcommons.unl.edu/physicsducharme/92 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Stephen Ducharme Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Donna A. Kunkel, James Hooper, Scott Simpson, Sumit Beniwal, Katie L. Morrow, Douglas C. Smith, Kimberly Cousins, Stephen Ducharme, Eva Zurek, and Axel Enders This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ physicsducharme/92 Published in Journal of Physical Chemistry Letters, 4:20 (2013), pp. 3413–3419; doi: 10.1021/jz4016124 Copyright © 2013 American Chemical Society.
    [Show full text]