L-5 Bond Length

Total Page:16

File Type:pdf, Size:1020Kb

L-5 Bond Length National University – Sudan Faculty of Clinical and Industrial Pharmacy First year (Batch 15) second Semester Organic Chemistry in Pharmacy (PA-ORG-127) Course Coordinator: Us. Maria M. Elamin Hamid, M.Sc. Pharmaceutical Analysis and Quality Control Email. [email protected] Mobile Number (00249-913714903 ) Specific Objectives • By the end of this Lecture the student, should be able to: L-5 • Define the various common types of physical bonding • Explain the various structure of Bond length physical bonding. and bond • Distinguish between various types strength of physical bonding. • Explain the concept of bond length and strength. All matter is held together by forces. The force between atoms within a molecule is (a chemical or intramolecular) force, strong force. The force between molecules is (a physical The Intermolecular or intermolecular) force , Forces are weaker than a weak force. Interamolecular Forces. : Strong interamolecular forces result in room temperature solids with high melting and boiling points. Examples: Ionic bonding, metallic bonding, and covalent bonding. : Hydrogen bonding, vander valls forces or London dispersion forces. Such bonds lead to stable molecules if they share electrons in such a way as to create a noble gas configuration for each atom. "Noble gas" valence electron configurations The idea that the noble-gas configuration is a particularly favorable, one which can be achieved through formation of electron-pair bonds with other atoms is known as the octet rule . Noble gas configuration (in this case, that of neon, s2p6) is achieved when two fluorine atoms (s2p5) are able to share an electron pair, which becomes the covalent bond Involve the sharing of a pair of valence electrons by two atoms There are two types of covalent bonding: : •with an equal sharing of electrons. A nonpolar covalent bond has a uniform distribution of electron charge between the bonded atoms. The simplest nonpolar covalent bonds exist in "homonuclear diatomic" molecules like H2 and Cl2. Both atoms attract the shared electrons equally. : Iodine forms a diatomic non-polar covalent molecule. The graphic on the top left shows that iodine has 7 electrons in the outer shell. Since 8 electrons are needed for an octet, two iodine atoms EQUALLY share 2 electrons. : Molecules of oxygen, also a covalent molecules. There are 6 electrons in the outer shell, therefore, 2 electrons are needed to complete the octet. The two oxygen atoms share a total of four electrons in two separate bonds, called double bonds. : The number of shared electrons depends on the number of electrons needed to complete the octet. unsymmetrical electron cloud distribution. The electrons in the bond are not shared equally. An example is HCl, the electrons in the bond spend more time around the chlorine nucleus. Formula Description Example Molecules with an A OH C H OH x OH at one end 2 5 Polar Molecules with an O A H O x y O at one end 2 Molecules with an N at one end NxAy NH3 Diatomic A2 molecules of the O2 Non-polar same element Most carbon C A CO x y compounds 2 The greater the electronegativity difference between atoms in a bond, the more polar the bond. Partial negative charges are found on the most electronegative atoms, the others are partially positive. The combination of carbons and hydrogens as in hydrocarbons or in the hydrocarbon portion of a molecule with a functional group is always NON-POLAR. An abbreviated list to know well is: Amide > Acid > Alcohol > Amine > Ether > Alkane Ionic Bonds Bond in which one or more electrons from one atom are removed and attached to another atom, resulting in positive and negative ions which attract each other. Ionic bonding is directly proportional to ionic charge and inversely proportional to ionic size. Ionic compounds Those molecules that consist of charged ions with opposite charges are called IONIC. These ionic compounds are generally solids with high melting points and conduct electrical current. Ionic compounds are generally formed from metal and a non-metal elements. Ionic Compounds Covalent Compounds 1. Crystalline solids (made of 1. Gases, liquids, or solids ions) (made of molecules) 2. High melting and boiling 2. Low melting and boiling points points 3. Conduct electricity when 3. Poor electrical conductors melted in all phases 4. Many soluble in water but 4. Many soluble in nonpolar not in nonpolar liquid liquids but not in water Metallic bonding The electromagnetic interaction between delocalized electrons, called conduction electrons and the metallic nuclei within other metals. Thus, the force of attraction between the mobile electrons and the positive kernels that binds the metal atoms together. Comparison of Ionic bond Covalent bond and Metallic bond Ionic Bond Covalent Bond Metallic Bond The bond is formed by This bond is formed due transfer of electrons This bond is formed by to the attraction between between two atoms the sharing of electrons kernels and the mobile having different electro between same or electrons in a metal negativities. different elements . lattice. This is a weak bond due This is a strong bond due This is also a fairly strong to the simultaneous to electrostatic force of bond because the attraction of the electrons attraction. electron pair is strongly by a large number of attracted by two nuclei. kernels This is a non-directional This is a non-directional bond. This is a directional bond. bond. This bond makes This bond makes This bond make substances hard and substances hard and substances malleable and brittle. incompressible. ductile. Summary of Types of Intermolecular Forces Weak Intermolecular Forces •Hydrogen bonding The unusually strong dipole- dipole interaction that occurs when a highly electronegative atom (N, O, or F) is bonded to a hydrogen atom. Hydrogen bonding is stronger than the dipole-dipole interactions which are in turn stronger than London dispersion forces. Hydrogen bonding exists only in molecules with an N-H, O-H, or F-H bond. The molecules which have this extra bonding are water •Dipole-Dipole The attraction between a partially negative portion of one molecule and a partially positive portion of a nearby molecule. Dipole-dipole interaction occurs in any polar molecule . Dipole-Dipole Interaction Hydrogen Bonding (Unusually strong Dipole-Dipole) London Dispersion• These forces are most important in systems that have no other types of molecular, like the rare gases, it is dispersion forces that hold the atoms together (no electrostatic or inductive forces exits). London Force It also goes by two other names, Van der Waals forces (VDW), dipole- induced dipole Effects of Intermolecular Forces: The strength of intermolecular forces present in a substance is related to the boiling point and melting point of the substance. Stronger intermolecular forces cause higher melting and boiling points. Methane: has only very weak London dispersion forces (lowest b.p. & m.p.) Chloroform: has dipole-dipole interaction (moderate b.p. & m.p.) Ammonia: has hydrogen bonding and dipole-dipole interaction (high b.p. & m.p.) Hydrophobic and hydrophilic molecule. 1- Hydrophobic = "water fearing" Hydrophobic molecules are non-polar and so do not mix with water; instead, they form their own separate "phase". Think about pouring oil into water: the oil, being hydrophobic, does not mix with water. Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances in general. 2- Hydrophilic = "water loving" Hydrophilic molecules are polar or ionic, so do mix with water. If you pour salt into water it will dissolve and then the individual Na+ and Cl- ions will remain in solution. hydrophilic (water-loving) substances tend to dissolve in water and other hydrophilic substances. Lipophobic and Lipophilic molecule •Lipophobic: "fat fearing" chemical compound, not soluble in fats, oils or on other non-polar solvents. From the other point of view, they do not absorb fats. •Lipophilic: "fat loving" the ability of a chemical compound to dissolve in fats, oils, lipids, and on other non-polar solvents such as hexane or toluene, these non-polar solvents are themselves lipophilic . Thus lipophilic substances tend to dissolve in other lipophilic substances..
Recommended publications
  • Courses of Study for Generic Elective 'B
    COURSES OF STUDY FOR GENERIC ELECTIVE 'B. Sc, HODs' PROGRAMME IN "CHEMISTRY" GENERIC ELECTIVE All Four Generic Papers (One paper to be studied in each semester) of Chemistry to be studied by the Students of Other than Chemistry Honours. SEM- I Generic Elective Papers (GE-l) (Minor-Chemistry) (any four) for other Departments/ Disciplines: (Credit: 06 each) GE: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Inorganic Chemistry-I (30 Periods) Atomic Structure: Review of Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure. What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of !fl and !fl2, Schrodinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for Is, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to Is and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m I and m«. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.
    [Show full text]
  • Clusters – Contemporary Insight in Structure and Bonding 174 Structure and Bonding
    Structure and Bonding 174 Series Editor: D.M.P. Mingos Stefanie Dehnen Editor Clusters – Contemporary Insight in Structure and Bonding 174 Structure and Bonding Series Editor: D.M.P. Mingos, Oxford, United Kingdom Editorial Board: X. Duan, Beijing, China L.H. Gade, Heidelberg, Germany Y. Lu, Urbana, IL, USA F. Neese, Mulheim€ an der Ruhr, Germany J.P. Pariente, Madrid, Spain S. Schneider, Gottingen,€ Germany D. Stalke, Go¨ttingen, Germany Aims and Scope Structure and Bonding is a publication which uniquely bridges the journal and book format. Organized into topical volumes, the series publishes in depth and critical reviews on all topics concerning structure and bonding. With over 50 years of history, the series has developed from covering theoretical methods for simple molecules to more complex systems. Topics addressed in the series now include the design and engineering of molecular solids such as molecular machines, surfaces, two dimensional materials, metal clusters and supramolecular species based either on complementary hydrogen bonding networks or metal coordination centers in metal-organic framework mate- rials (MOFs). Also of interest is the study of reaction coordinates of organometallic transformations and catalytic processes, and the electronic properties of metal ions involved in important biochemical enzymatic reactions. Volumes on physical and spectroscopic techniques used to provide insights into structural and bonding problems, as well as experimental studies associated with the development of bonding models, reactivity pathways and rates of chemical processes are also relevant for the series. Structure and Bonding is able to contribute to the challenges of communicating the enormous amount of data now produced in contemporary research by producing volumes which summarize important developments in selected areas of current interest and provide the conceptual framework necessary to use and interpret mega- databases.
    [Show full text]
  • Topological Analysis of the Metal-Metal Bond: a Tutorial Review Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L
    Topological analysis of the metal-metal bond: A tutorial review Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L. Kahn, Bernard Silvi To cite this version: Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L. Kahn, Bernard Silvi. Topological analysis of the metal-metal bond: A tutorial review. Coordination Chemistry Reviews, Elsevier, 2017, 345, pp.150-181. 10.1016/j.ccr.2017.04.009. hal-01540328 HAL Id: hal-01540328 https://hal.sorbonne-universite.fr/hal-01540328 Submitted on 16 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Topological analysis of the metal-metal bond: a tutorial review Christine Lepetita,b, Pierre Faua,b, Katia Fajerwerga,b, MyrtilL. Kahn a,b, Bernard Silvic,∗ aCNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. bUniversité de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, i France cSorbonne Universités, UPMC, Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005 Paris, France Abstract This contribution explains how the topological methods of analysis of the electron density and related functions such as the electron localization function (ELF) and the electron localizability indicator (ELI-D) enable the theoretical characterization of various metal-metal (M-M) bonds (multiple M-M bonds, dative M-M bonds).
    [Show full text]
  • 1 5. Chemical Bonding
    5. Chemical Bonding: The Covalent Bond Model 5.1 The Covalent Bond Model Almost all chemical substances are found as aggregates of atoms in the form of molecules and ions produced through the reactions of various atoms of elements except the noble-gas elements which are stable mono-atomic gases. Chemical bond is a term that describes the attractive force that is holding the atoms of the same or different kind of atoms in forming a molecule or ionic solid that has more stability than the individual atoms. Depending on the kinds of atoms participating in the interaction there seem to be three types of bonding: Gaining or Losing Electrons: Ionic bonding: Formed between many ions formed by metal and nonmetallic elements. Sharing Electrons: Covalent bonding: sharing of electrons between two atoms of non-metals. Metallic Bonding: sharing of electrons between many atoms of metals. Ionic Compounds Covalent Compounds Metallic Compounds 1. Metal and non-meal Non-metal and non-meal Metal of one type or, element combinations. elements combinations. combinations of two or metal elements combinations. 2. High melting brittle Gases, liquids, or waxy, low Conducting, high melting, crystalline solids. melting soft solids. malleable, ductile crystalline solids. 3. Do not conduct as a solid Do not conduct electricity at Conduct electricity at solid but conducts electricity any state. and molten states. when molten. 4. Dissolved in water produce Most are soluble in non-polar Insoluble in any type of conducting solutions solvents and few in water. solvents. (electrolytes) and few These solutions are non- are soluble in non-polar conducting (non- solvents.
    [Show full text]
  • Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding
    Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding Key Concepts • The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other. • When an atom loses or gains an electron, it is called an ion. • The atom that loses an electron becomes a positive ion. • The atom that gains an electron becomes a negative ion. • A positive and negative ion attract each other and form an ionic bond. Summary Students will look at animations and make drawings of the ionic bonding of sodium chloride (NaCl). Students will see that both ionic and covalent bonding start with the attractions of pro- tons and electrons between different atoms. But in ionic bonding, electrons are transferred from one atom to the other and not shared like in covalent bonding. Students will use Styrofoam balls to make models of the ionic bonding in sodium chloride (salt). Objective Students will be able to explain the process of the formation of ions and ionic bonds. Evaluation The activity sheet will serve as the “Evaluate” component of each 5-E lesson plan. The activity sheets are formative assessments of student progress and understanding. A more formal summa- tive assessment is included at the end of each chapter. Safety Be sure you and the students wear properly fitting goggles. Materials for Each Group • Black paper • Salt • Cup with salt from evaporated saltwater • Magnifier • Permanent marker Materials for Each Student • 2 small Styrofoam balls • 2 large Styrofoam balls • 2 toothpicks ©2016 American Chemical Society Middle School Chemistry - www.middleschoolchemistry.com 337 Note: In an ionically bonded substance such as NaCl, the smallest ratio of positive and negative ions bonded together is called a “formula unit” rather than a “molecule.” Technically speaking, the term “molecule” refers to two or more atoms that are bonded together covalently, not ioni- cally.
    [Show full text]
  • Chemical Forces Understanding the Relative Melting/Boiling Points of Two
    Chapter 8 – Chemical Forces Understanding the relative melting/boiling points of two substances requires an understanding of the forces acting between molecules of those substances. These intermolecular forces are important for many additional reasons. For example, solubility and vapor pressure are governed by intermolecular forces. The same factors that give rise to intermolecular forces (e.g. bond polarity) can also have a profound impact on chemical reactivity. Chemical Forces Internuclear Distances and Atomic Radii There are four general methods of discussing interatomic distances: van der Waal’s, ionic, covalent, and metallic radii. We will discuss the first three in this section. Each has a unique perspective of the nature of the interaction between interacting atoms/ions. Van der Waal's Radii - half the distance between two nuclei of the same element in the solid state not chemically bonded together (e.g. solid noble gases). In general, the distance of separation between adjacent atoms (not bound together) in the solid state should be the sum of their van der Waal’s radii. F F van der Waal's radii F F Ionic Radii – Ionic radii were discussed in Chapter 4 and you should go back and review that now. One further thing is worth mentioning here. Evidence that bonding really exists and is attractive can be seen in ionic radii. For all simple ionic compounds, the ions attain noble gas configurations (e.g. in NaCl the Na+ ion is isoelectronic to neon and the Cl- ion is isoelectronic to argon). For the sodium chloride example just given, van der Waal’s radii would predict (Table 8.1, p.
    [Show full text]
  • Starter for Ten 3
    Learn Chemistry Starter for Ten 3. Bonding Developed by Dr Kristy Turner, RSC School Teacher Fellow 2011-2012 at the University of Manchester, and Dr Catherine Smith, RSC School Teacher Fellow 2011-2012 at the University of Leicester This resource was produced as part of the National HE STEM Programme www.rsc.org/learn-chemistry Registered Charity Number 207890 3. BONDING 3.1. The nature of chemical bonds 3.1.1. Covalent dot and cross 3.1.2. Ionic dot and cross 3.1.3. Which type of chemical bond 3.1.4. Bonding summary 3.2. Covalent bonding 3.2.1. Co-ordinate bonding 3.2.2. Electronegativity and polarity 3.2.3. Intermolecular forces 3.2.4. Shapes of molecules 3.3. Properties and bonding Bonding answers 3.1.1. Covalent dot and cross Draw dot and cross diagrams to illustrate the bonding in the following covalent compounds. If you wish you need only draw the outer shell electrons; (2 marks for each correct diagram) 1. Water, H2O 2. Carbon dioxide, CO2 3. Ethyne, C2H2 4. Phosphoryl chloride, POCl3 5. Sulfuric acid, H2SO4 Bonding 3.1.1. 3.1.2. Ionic dot and cross Draw dot and cross diagrams to illustrate the bonding in the following ionic compounds. (2 marks for each correct diagram) 1. Lithium fluoride, LiF 2. Magnesium chloride, MgCl2 3. Magnesium oxide, MgO 4. Lithium hydroxide, LiOH 5. Sodium cyanide, NaCN Bonding 3.1.2. 3.1.3. Which type of chemical bond There are three types of strong chemical bonds; ionic, covalent and metallic.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Intro Bonding and Properties-2016-4U
    Introduction to Bonding and Properties of Ionic and Molecular Covalent Compounds SCH4U_2016 1. Ionic Bonding - Ionic solids are generally stable and the bonds are relatively strong. - electrostatic attraction between oppositely charged ions forming a 3-D crystalline lattice structure - crystal lattice energy is the energy liberated when one mole of an ionic crystal is formed from the gaseous ions, high stability reached when energy is lost. Properties - do not conduct an electric current in the solid state, why? - in the liquid phase, i.e when molten, they are relatively good conductor of an electric current, why? - when soluble in water form good electrolytes, why? - relatively high M.P. and B.P. (>500°C, >100°C) - do not readily vaporize at room temperatures. These solids have relatively low volatility, low vapour pressure, this also indicates that a.... - brittle, easily broken under stress, why? 2. MOLECULAR CRYSTALS Covalent bonding, the sharing of electrons is known as an intra molecular force. Properties - neither solids nor liquids conduct an electric current. This indicates ... - many exist as gases at room temperature or as volatile solids and liquids, indicating ... - M.P. and B.P. are relatively low, thus indicating ... - Solids are soft and waxy - Large amount of energy required to decompose in simple substance, indicating ... Covalent Bonding How do these work? Covalent bonding occurs between atoms that have quite high electronegativities, i.e. between two non- metals. Example: H + H sssssd H— H In covalent bonding the two atoms involved share some of their valence electrons. The attraction of the two nuclei for these shared electrons results in the atoms being bonded together.
    [Show full text]
  • Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
    Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • Identification of a Simplest Hypervalent Hydrogen Fluoride
    www.nature.com/scientificreports OPEN Identification of a Simplest Hypervalent Hydrogen Fluoride Anion in Solid Argon Received: 19 December 2016 Meng-Chen Liu1, Hui-Fen Chen2, Chih-Hao Chin1, Tzu-Ping Huang1, Yu-Jung Chen3 & Yu-Jong Accepted: 18 April 2017 Wu1,4 Published: xx xx xxxx Hypervalent molecules are one of the exceptions to the octet rule. Bonding in most hypervalent molecules is well rationalized by the Rundle–Pimentel model (three-center four-electron bond), and high ionic bonding between the ligands and the central atom is essential for stabilizing hypervalent molecules. Here, we produced one of the simplest hypervalent anions, HF−, which is known to deviate from the Rundle–Pimentel model, and identified its ro-vibrational features. High-levelab inito calculations reveal that its bond dissociation energy is comparable to that of dihalides, as supported by secondary photolysis experiments with irradiation at various wavelengths. The charge distribution analysis suggested that the F atom of HF− is negative and hypervalent and the bonding is more covalent than ionic. The octet rule indicates that atoms of the main group elements tend to gain or lose electrons in order to have eight electrons in their valence shells1, 2, similar to the electronic configuration of the noble gases. Therefore, to attain this fully filled electronic configuration, atoms combine to form molecules by sharing their valence electrons to form chemical bonds. This rule is especially applicable to the period 2 and 3 elements. Most molecules are formed by following this rule and the bonding structure of molecules can be easily recognized by using Lewis electron dot diagrams.
    [Show full text]
  • The Different Types of Bonds Atoms Form Bonds with Other Atoms in Order to Have a Full Outer Shell of Electrons Like the Noble Gases
    Reading- The Different Types of Bonds Atoms form bonds with other atoms in order to have a full outer shell of electrons like the noble gases. If an atom has too few or too many valence electrons it will have to gain, lose, or share those outer electrons with another atom in order to become “happy” or in chemistry terms, more stable. There are many types of chemical bonds that can form, however the 3 main types are: ionic, covalent, and metallic bonds. You must become familiar with how they work and the differences between the 3 types. I. Ionic bonding: Model 1 is a description of what chemists call ionic bonding. Ionic bonding occurs strictly between metal and nonmetal atoms. In ionic bonding some of the valence electrons of a metal atom are transferred to a nonmetal atom so that each atom ends up with a noble gas configuration. Usually one, two, or three electrons are transferred from one atom to another. This transfer of an electron causes the metal atom to have a net positive charge (+) and the nonmetal atom to have a net negative charge (-). The individual atoms in ionic solids are referred to as ions because of their charges. These opposite charges are attracted to one another. On the right is a drawing of a chunk of salt, NaCl, a very common ionic substance. Notice how the sodium and chloride ions alternate throughout the structure. The positive and negative ions alternating in three dimensions make the solid quite strong because of their strong attractions to one another.
    [Show full text]