A Comprehensive Volcanic Hazard Assessment for Mount Meager Volcanic Complex, B.C

Total Page:16

File Type:pdf, Size:1020Kb

A Comprehensive Volcanic Hazard Assessment for Mount Meager Volcanic Complex, B.C A Comprehensive Volcanic Hazard Assessment for Mount Meager Volcanic Complex, B.C. by Rachel Warwick B.Sc., Simon Fraser University, 2017 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Earth Sciences Faculty of Science © Rachel Warwick 2020 SIMON FRASER UNIVERSITY Fall 2020 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Declaration of Committee Name: Rachel Warwick Degree: Master of Science Title: A Comprehensive Volcanic Hazard Assessment for Mount Meager Volcanic Complex, B.C. Committee: Chair: Brendan Dyck Assistant Professor, Earth Sciences Glyn Williams-Jones Supervisor Professor, Earth Sciences Jeffrey Witter Committee Member Adjunct Professor, Earth Sciences Melanie Kelman Committee Member Physical Scientist Geological Survey of Canada Nathalie Vigouroux Examiner Instructor, Earth and Environmental Sciences Douglas College ii Abstract Mount Meager Volcanic Complex located in south-western British Columbia exhibits possible volcanic activity in the form of hydrothermal features such as several hot springs around the base and a fumarole field in the northeast corner of the complex. Operational infrastructure, including a run-of-river hydroelectric project, is present in the vicinity of the volcano and a significant population exists only 60 km downstream. Up until now, no volcanic hazard assessment or accompanying map existed for Mount Meager. Hazard assessments are important tools used to understand, manage and reduce the risks associated with volcanic environments. This thesis investigates the potential primary volcanic hazards associated with a future explosive eruption at Mount Meager. These hazards are identified as lahars, pyroclastic density currents and volcanic ash. With the use of numerical modelling programs, the distribution, timescales, intensity of inundation and other parameters are investigated. Finally, a suite of scenario-based preliminary hazard maps have been produced to visually display these hazards as a communication tool. This information relays hazard information to stakeholders with a vested interest in the potential risks involved with any future explosive volcanic event from Mount Meager. Keywords: Mount Meager; Volcanic Hazard Modelling; Lahar; Pyroclastic Flow; Tephra; Canadian Volcano iii Acknowledgements There are many people that I would like to extend my gratitude for their input and guidance through these past few years of completing my Master’s. First, thank you to my senior supervisor, Dr. Glyn Williams-Jones for the opportunity to work on this exciting project and for going above-and-beyond to offer research guidance and educational opportunities and facilitating field research. I am also extremely grateful for the input and words of encouragement from my other committee members Dr. Jeff Witter and Dr. Melanie Kelman throughout my Master’s degree. I would also like to acknowledge Jennifer Harrison (University of Bristol) who completed the numerical modelling of tephra distribution with TephraProb. This was an invaluable component and addition to the volcanic hazard analysis for this hazard assessment. Thank you to everyone (past and present) in the physical volcanology lab group for all the time they have taken out of their day to assist me in small and sometimes big challenges and for being there when I needed to bounce around ideas or share a laugh. You have all helped me immeasurably over the past few years. Specifically thank you to Gioachino Roberti for providing me with so much material, information, and expertise about Mount Meager and for initial guidance of using VolcFlow. And also to Yannick Le Moigne for his guidance in using and troubleshooting issues with VolcFlow. Thank you to Antonina Calahorrano who was a part of initial investigations of statistical analysis of wind patterns across Mount Meager. I would also like to thank many others in the SFU Earth Science department who have either helped me throughout my years in the department or who have been there for great discussions and laughs, and made my experience in the department wonderful. Next, I would like to thank the many individuals for their assistance in various aspects of navigating the numerical models chosen for each hazard. Thank you to Valentin Gueugneau for answering my questions about lahar and pyroclastic flow modelling in VolcFlow, Francisco Vasconez for also offering guidance in lahar modelling with VolcFlow and lahar modelling in LAHARZ. Thank you to everyone at the Cascades Volcano Observatory who offered guidance and suggestions upon listening to my discussion about my research in November 2018. Specifically, thank you to Sarah iv Ogburn for her guidance and suggestions for pyroclastic flow modelling of Mount Meager for providing me with additional reading material about volcanic hazard assessments available for U.S. volcanoes. Finally, thank you so much to my friends and family who have offered support through words of encouragement, guidance and patiently listening to my ideas or challenges. Especially, thank you to my parents, whom without their support and unquestioning belief in all my hopes and dreams, I would not be where I am today. v Table of Contents Declaration of Committee ................................................................................................ ii Abstract .......................................................................................................................... iii Acknowledgements ........................................................................................................ iv Table of Contents ........................................................................................................... vi List of Tables ................................................................................................................. viii List of Figures................................................................................................................. ix List of Acronyms ............................................................................................................ xii Chapter 1. Introduction .............................................................................................. 1 1.1. Background ........................................................................................................... 2 1.2. Geologic History .................................................................................................... 6 1.3. Eruption sequence and hazards of the 2360 calendar years B.P. eruption ............ 7 1.4. Future Volcanic Hazards ....................................................................................... 8 1.4.1. Pyroclastic Density Currents ........................................................................ 10 1.4.2. Lahar Flows ................................................................................................. 11 1.4.3. Volcanic ash ................................................................................................ 13 1.5. Introduction to hazard maps ................................................................................ 14 1.6. Thesis outline ...................................................................................................... 15 Chapter 2. Methods .................................................................................................. 17 2.1. The governing scenarios ..................................................................................... 17 2.2. Topographic Controls: DEM ................................................................................ 19 2.3. Numerical Models ................................................................................................ 20 2.3.1. Pyroclastic Density Current modelling programs and parameters ................ 21 ∆H/L energy cone .................................................................................................. 21 2.3.2. Lahar modelling programs and parameters ................................................. 23 LAHARZ ................................................................................................................. 24 VolcFlow ................................................................................................................ 27 2.3.3. Volcanic ash modelling and parameters ...................................................... 30 Ash3d..................................................................................................................... 31 TephraProb ............................................................................................................ 33 Chapter 3. Numerical Model Results ....................................................................... 36 3.1. Pyroclastic Density Current Hazard Zones .......................................................... 36 3.1.1. H/L energy cone ........................................................................................ 36 3.2. Lahar Inundation.................................................................................................. 39 3.2.1. LAHARZ ...................................................................................................... 39 3.2.2. VolcFlow ...................................................................................................... 42 Lahar Result Summary and Limitations .................................................................
Recommended publications
  • AMEC Report Template
    BLACKWATER GOLD PROJECT APPLICATION FOR AN ENVIRONMENTAL ASSESSMENT CERTIFICATE / ENVIRONMENTAL IMPACT STATEMENT POTENTIAL EFFECTS OF THE ENVIRONMENT ON THE PROJECT TABLE OF CONTENTS 11 POTENTIAL EFFECTS OF THE ENVIRONMENT ON THE PROJECT ............................. 11-1 11.1 Introduction .............................................................................................................. 11-1 11.2 Information Sources and Methods .......................................................................... 11-2 11.3 Subsidence .............................................................................................................. 11-2 11.4 Landslides/Mass Wasting/Slope Stability ................................................................ 11-3 11.4.1 Baseline ...................................................................................................... 11-3 11.4.2 Potential Effects on the Project and Mitigation ........................................... 11-4 11.4.3 Summary .................................................................................................... 11-5 11.5 Avalanches .............................................................................................................. 11-6 11.5.1 Baseline ...................................................................................................... 11-6 11.5.2 Potential Effects on the Project and Mitigation ........................................... 11-6 11.5.3 Summary ...................................................................................................
    [Show full text]
  • Community Risk Assessment
    COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • A Celebration of the Life and Work of Lincoln Hollister
    A Celebration of the Life and Work of: Lincoln Hollister The Agenda............................................................................2 n thirty-some years, I have TableLincoln Hollister: of Contents Ilearned many things from Living life on top of the world, literally! ...........................4-11 Lincoln. Examples: what a fluid Published papers .............................................................12-15 inclusion is, where to find graphite next time I make a pencil, how to More testimonials, get my driveway plowed (we are in no particular order.............................. 16-inside back cover When not investigating the outcrops of a distant field neighbors), the coefficient of area, Lincoln Hollister returned to his office on the absurdity in marine regulations Testimonials in alphabetical order: fourth floor of Guyot Hall at Princeton University. in British Columbia, and why the Visitors to his office usually arrived breathless Princeton Township zoning board Bernardo Cesare .................................................................. 18 after climbing the memorably long set of stairs. stays up past midnight coping with Katy Barnhart ’08 and Jesse Chadwick ’08 ..........................20 Photo by Jesse Chadwick ’08 Lincoln. As nobody needs to be Front Cover-Center: Lincoln Hollister in the Coast Mountains of told, Lincoln is an eclectic, ready, Sarah Bertucci ’98 ............................................................... 16 British Columbia, 1972. and wide-ranging talker. Brown- Cameron Davidson ’91
    [Show full text]
  • Anahim Volcanic Belt Nazko Cone…A Sleepy Little Volcano, Not Made in Canada: a Tuya Skoatl Point
    Geological Wonders of BC Farwell Canyon Wonder: an emotion comparable to surprise that people feel when perceiving something rare or unexpected Tags for 12 wonders for your geo-bucket list So much geology…so many wonders! Sullivan Ore body Main portal of the Sullivan mine near Kimberley when the mine was newly driven in 1915. The mine yielded over $42 billion in metals over its life Sullivan is a sedimentary exhalative (SEDEX) deposit formed around 1.5 Ga ago Since burial, geologic forces have affected the deposit…at depth the sulphides behaved more like tooth paste. Burgess Shale “the world’s most significant fossil discovery” Marrella splendens Specimen length (ex. ant.) = 20 mm 505 Million years ago Ottoia prolifica ate a Haplophrentis carinatus (maximum width of the worm = 1.2 cm) Reconstructions of two "weird wonders" from the Burgess Shale Odontogriphus (left, fossil length = 8 cm) and Nectocaris (right, fossil length = 4 cm, excluding tentacles), BC’s Contribution to Lagerstätten Portalia mira: of uncertain affinity Jade …an alteration product of ultramafic (high magnesium and iron, low silica) rock that is commonly called serpentinite… BC’s Provincial Gemstone Aldergrove BC The Curious Cache Creek Terrane It is characterized by an oceanic-rocks containing Tethyan-type fusulinid bearing limestone Terrane: a crustal block or fragment that is typically bounded by faults and that has a geologic genesis distinct from those of surrounding areas. Geologic Realms…. whoa! Realms = regions of origin The oceanic terranes, shown in red, are “bookmarks” that separate island arc and pericratonic blocks from each other. Hey, Ancient Rice? The Fusulinida is an extinct order within the Foraminifera in which the tests (shells) are composed of tightly packed, secreted microgranular calcite Yabeina colubiana in limestone This cannot be… Terrane theory was first proposed by Jim Monger of the Geological Survey of Canada and Charlie Rouse in 1971 as an explanation for a set of fusilinid fossils found in central British Columbia.
    [Show full text]
  • Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene.
    [Show full text]
  • Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera
    GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 ©Her Majesty the Queen in Right of Canada 2008 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8 Jessop, A. 2008: Review of National Geothermal Energy Program; Phase 2 – Geothermal Potential of the Cordillera; Geological Survey of Canada, Open File 5906, 88p. Open files are products that have not gone through the GSC formal publication process. The Meager Cree7 Hot Springs 22 Fe1ruary 1273 CONTENTS REVIEW OF NATIONAL GEOTHERMAL ENERGY PROGRAM PHASE 2 - THE CORDILLERA OF WESTERN CANADA CHAPTER 1 - THE NATURE OF GEOTHERMAL ENERGY INTRODUCTION 1 TYPES OF GEOTHERMAL RESOURCE 2 Vapour-domi ate reservoirs 3 Fluid-domi ated reservoirs 3 Hot dry roc) 3 PHYSICAL QUANTITIES IN THIS REPORT 3 UNITS 4 CHAPTER 2 - THE GEOTHERMAL ENERGY PROGRAMME 6 INTRODUCTION THE GEOTHERMAL ENERGY PROGRAMME 6 Ob.ectives 7 Scie tific base 7 Starti 1 the Geothermal E er1y Pro1ram 8 MA4OR PRO4ECTS 8 Mea1er Mou tai 8 Re1i a 9 ENGINEERING AND ECONOMIC STUDIES 9 GRO6 TH OF OUTSIDE INTEREST 10 THE GEOTHERMAL COMMUNITY 10 Tech ical groups a d symposia 10 ASSESSMENT OF THE RESOURCE 11 i CHAPTER 3 - TECTONIC AND THERMAL STRUCTURE OF THE CORDILLERA 12 TECTONIC HISTORY 12 HEAT FLO6 AND HEAT
    [Show full text]
  • CANLAVA Mining Corp. 203 – 1312 Ketch Court Coquitlam, B.C
    2016 GEOLOGICAL REPORT ON THE NAZKO PROPERTY CARIBOO MINING DIVISION BRITISH COLUMBIA BCGS MAPS 093B.082 AND 093B.092 LATITUDE 52° 55’ 32.3” N AND LONGITUDE 123° 44’ 10.8” W STATEMENT OF WORK EVENT: 5611358 Prepared for: CANLAVA Mining Corp. 203 – 1312 Ketch Court Coquitlam, B.C. V3K 6W1 Prepared by: R. A. (Bob) Lane, P.Geo. Plateau Minerals Corp. Date: June 30, 2016 NAZKO PROPERTY - 2016 ASSESSMENT REPORT TABLE OF CONTENTS 1 EXECUTIVE SUMMARY .............................................................................................. 1 2 INTRODUCTION ........................................................................................................ 2 2.1 LOCATION AND ACCESS ............................................................................................................................. 2 2.2 PHYSIOGRAPHY AND CLIMATE .................................................................................................................. 2 2.3 PROPERTY STATUS AND OWNERSHIP ...................................................................................................... 2 2.4 DEVELOPMENT AND EXPLORATION HISTORY ......................................................................................... 6 3 REGIONAL GEOLOGY ................................................................................................. 6 4 PROPERTY GEOLOGY ................................................................................................ 7 5 MINERALIZATION ....................................................................................................
    [Show full text]
  • BCTS Field Identification Guide to Plant Species of Management Concern
    BCTS CARIBOO-CHILCOTIN FIELD GUIDE TO SPECIES IDENTIFICATION BCTS Cariboo-Chilcotin Field Guide to Species Identification © 2009 BC Timber Sales Cariboo-Chilcotin Business Area, Ministry Forests and Range All rights reserved. No part of this book may be reproduced or used in any form or by any means without the written permission of BC Timber Sales Cariboo-Chilcotin Business Area, Ministry Forests and Range, Williams Lake, British Columbia, Canada. June 2009 Prepared by Crispin S. Guppy, M.Sc., R.P.Bio. [email protected] Prepared for BC Timber Sales, Cariboo-Chilcotin Business Area Ministry Forests and Range 200 - 640 Borland Street Williams Lake, BC V2G 4T1 Canada 1 TABLE OF CONTENTS ANIMAL SPECIES AT RISK ...........................................................................................................4 MAGNUM MANTLESLUG.........................................................................................................4 GREAT BASIN SPADEFOOT....................................................................................................4 GOPHER SNAKE, RACER AND RUBBER BOA...........................................................................5 WESTERN PAINTED TURTLE ..................................................................................................6 BADGER................................................................................................................................6 BATS AND MYOTIS ................................................................................................................6
    [Show full text]
  • Canada and Western U.S.A
    Appendix B – Region 12 Country and regional profiles of volcanic hazard and risk: Canada and Western U.S.A. S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 12: Canada and Western U.S.A. only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 12 Canada and Western USA Pg.491 Canada 499 USA – Contiguous States 507 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 12: Canada and Western USA Description Region 12: Canada and Western USA comprises volcanoes throughout Canada and the contiguous states of the USA. Country Number of volcanoes Canada 22 USA 48 Table 12.1 The countries represented in this region and the number of volcanoes. Volcanoes located on the borders between countries are included in the profiles of all countries involved. Note that countries may be represented in more than one region, as overseas territories may be widespread.
    [Show full text]
  • The 2007 Nazko, British Columbia, Earthquake Sequence: Injection of Magma Deep in the Crust Beneath the Anahim Volcanic Belt by J
    Bulletin of the Seismological Society of America, Vol. 101, No. 4, pp. 1732–1741, August 2011, doi: 10.1785/0120100013 The 2007 Nazko, British Columbia, Earthquake Sequence: Injection of Magma Deep in the Crust beneath the Anahim Volcanic Belt by J. F. Cassidy, N. Balfour,* C. Hickson,† H. Kao, R. White, J. Caplan-Auerbach, S. Mazzotti, G. C. Rogers, I. Al-Khoubbi, A. L. Bird, L. Esteban,‡ M. Kelman, J. Hutchinson, and D. McCormack Abstract On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of mag- nitude 2.3–2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25–31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but con- sistent with volcanic-related events. Analysis of receiver functions at a station imme- diately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust.
    [Show full text]
  • Insert Park Picture Here
    Golden Ears Park Management Plan November 2013 Photo on cover page: Alouette Lake. Credit: Panoramio. This management plan replaces the direction provided in the 1976 Golden Ears Master Plan. Golden Ears Park Management Plan Approved by: November 13, 2013 Jennie Aikman Date Regional Director, South Coast Region BC Parks November 13, 2013 Brian Bawtinheimer Date Executive Director, Parks Planning and Management Branch BC Parks [blank page] Table of Contents 1.0 Introduction ............................................................................................................... 1 1.1 Management Plan Purpose............................................................................................. 1 1.2 Planning Area .................................................................................................................. 1 1.3 Legislative Framework .................................................................................................... 4 1.4 Adjacent Patterns of Land Use........................................................................................ 4 2.0 Values and Roles of the Park ...................................................................................... 6 2.1 Significance in the Protected Areas System ................................................................... 6 2.2 Natural Heritage Values .................................................................................................. 6 2.3 Cultural Heritage Values ..............................................................................................
    [Show full text]