Official Program Facial Reconstruction: Completely Reimagined
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vertical Perspective Medical Assistance Program
Kansas Vertical Perspective Medical Assistance Program December 2006 Provider Bulletin Number 688 General Providers Emergent and Nonemergent Diagnosis Code List Attached is a list of diagnosis codes and whether the Kansas Medical Assistance Program (KMAP) considers the code to be emergent or nonemergent. Providers are responsible for validating whether a particular diagnosis code is covered by KMAP under the beneficiary’s benefit plan and that all program requirements are met. This list does not imply or guarantee payment for listed diagnosis codes. Information about the Kansas Medical Assistance Program as well as provider manuals and other publications are on the KMAP Web site at https://www.kmap-state-ks.us. If you have any questions, please contact the KMAP Customer Service Center at 1-800-933-6593 (in-state providers) or (785) 274-5990 between 7:30 a.m. and 5:30 p.m., Monday through Friday. EDS is the fiscal agent and administrator of the Kansas Medical Assistance Program for the Kansas Health Policy Authority. Page 1 of 347 Emergency Indicators as noted by KMAP: N – Never considered emergent S – Sometimes considered emergent (through supporting medical documentation) Y – Always considered emergent Diagnosis Emergency Diagnosis Code Description Code Indicator 0010 Cholera due to Vibrio Cholerae S 0011 Cholera due to Vibrio Cholerae El Tor S 0019 Unspecified Cholera S 019 Late Effects of Tuberculosis N 0020 Typhoid Fever S 0021 Paratyphoid Fever A S 0022 Paratyphoid Fever B S 0023 Paratyphoid Fever C S 024 Glanders Y 025 Melioidosis -
MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002
MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002 Michigan Department of Community Health Community Public Health Agency and Center for Health Statistics 3423 N. Martin Luther King Jr. Blvd. P. O. Box 30691 Lansing, Michigan 48909 Michigan Department of Community Health James K. Haveman, Jr., Director B-274a (March, 2002) Authority: P.A. 236 of 1988 BIRTH DEFECTS REGISTRY MICHIGAN DEPARTMENT OF COMMUNITY HEALTH BIRTH DEFECTS REGISTRY STAFF The Michigan Birth Defects Registry staff prepared this manual to provide the information needed to submit reports. The manual contains copies of the legislation mandating the Registry, the Rules for reporting birth defects, information about reportable and non reportable birth defects, and methods of reporting. Changes in the manual will be sent to each hospital contact to assist in complete and accurate reporting. We are interested in your comments about the manual and any suggestions about information you would like to receive. The Michigan Birth Defects Registry is located in the Office of the State Registrar and Division of Health Statistics. Registry staff can be reached at the following address: Michigan Birth Defects Registry 3423 N. Martin Luther King Jr. Blvd. P.O. Box 30691 Lansing MI 48909 Telephone number (517) 335-8678 FAX (517) 335-9513 FOR ASSISTANCE WITH SPECIFIC QUESTIONS PLEASE CONTACT Glenn E. Copeland (517) 335-8677 Cytogenetics Laboratory Reporting Instructions I. INTRODUCTION This manual provides detailed instructions on the proper reporting of diagnosed birth defects by cytogenetics laboratories. A report is required from cytogenetics laboratories whenever a reportable condition is diagnosed for patients under the age of two years. -
Morfofunctional Structure of the Skull
N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V. -
A New Classification of Zygomatic Fracture Featuring Zygomaticofrontal Suture: Injury Mechanism and a Guide to Treatment
IBIMA Publishing Plastic Surgery: An International Journal http://www.ibimapublishing.com/journals/PSIJ/psij.html Vol. 2013 (2013), Article ID 383486, 6 pages DOI: 10.5171/2013.383486 Research Article A New Classification of Zygomatic Fracture Featuring Zygomaticofrontal Suture: Injury Mechanism and a Guide to Treatment Hisao Ogata, Yoshiaki Sakamoto and Kazuo Kishi Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ward, Tokyo, Japan Received 21 November 2012; Accepted 10 December 2012; Published 26 January 2013 Academic Editor: Zubing Li ______________________________________________________________________________________________________________ Abstract The researchers establish a new classification system for zygomatic fractures based on computed tomography and mechanism of injury, which could be used to inform treatment options. Patients treated for isolated zygomatic fracture at the Keio University Hospital between 2004 and 2011 were recruited for this study. The cases were classified into 4 types based on the fracture pattern of the zygomaticofrontal suture and inferior orbital rim. In total, 113 patients aged 16 to 82 years (mean age (SD) = 39.8 (17.0) years), including 74 men and 39 women, were analyzed. Overall, 54 patients had shear fractures and 59 patients had greenstick type fractures. In both shear and greenstick fractures, the ratio of medial type fractures was significantly higher than that of lateral type fractures (p < 0.001). Furthermore, the number of shear type fractures in those <20 years old was lower than that in other age groups (p < 0.05). In conclusion, this classification is an epoch-making classification based on the mechanism of facial injury, and may be used to inform treatment options to achieve optimal biomechanical stability. -
Incidence, Number and Topography of Wormian Bones in Greek Adult Dry Skulls K
CORE Metadata, citation and similar papers at core.ac.uk Provided by Via Medica Journals Folia Morphol. Vol. 78, No. 2, pp. 359–370 DOI: 10.5603/FM.a2018.0078 O R I G I N A L A R T I C L E Copyright © 2019 Via Medica ISSN 0015–5659 journals.viamedica.pl Incidence, number and topography of Wormian bones in Greek adult dry skulls K. Natsis1, M. Piagkou2, N. Lazaridis1, N. Anastasopoulos1, G. Nousios1, G. Piagkos2, M. Loukas3 1Department of Anatomy, Faculty of Health and Sciences, Medical School, Aristotle University of Thessaloniki, Greece 2Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Greece 3Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies [Received: 19 January 2018; Accepted: 7 March 2018] Background: Wormian bones (WBs) are irregularly shaped bones formed from independent ossification centres found along cranial sutures and fontanelles. Their incidence varies among different populations and they constitute an anthropo- logical marker. Precise mechanism of formation is unknown and being under the control of genetic background and environmental factors. The aim of the current study is to investigate the incidence of WBs presence, number and topographical distribution according to gender and side in Greek adult dry skulls. Materials and methods: All sutures and fontanelles of 166 Greek adult dry skulls were examined for the presence, topography and number of WBs. One hundred and nineteen intact and 47 horizontally craniotomised skulls were examined for WBs presence on either side of the cranium, both exocranially and intracranially. Results: One hundred and twenty-four (74.7%) skulls had WBs. -
Humans Preserve Non-Human Primate Pattern of Climatic Adaptation
Quaternary Science Reviews 192 (2018) 149e166 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Humans preserve non-human primate pattern of climatic adaptation * Laura T. Buck a, b, , Isabelle De Groote c, Yuzuru Hamada d, Jay T. Stock a, e a PAVE Research Group, Department of Archaeology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK b Human Origins Research Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK c School of Natural Science and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK d Primate Research Institute, University of Kyoto, Inuyama, Aichi, 484-8506, Japan e Department of Anthropology, Western University, London, Ontario, N6A 3K7, Canada article info abstract Article history: There is evidence for early Pleistocene Homo in northern Europe, a novel hominin habitat. Adaptations Received 9 October 2017 enabling this colonisation are intriguing given suggestions that Homo exhibits physiological and Received in revised form behavioural malleability associated with a ‘colonising niche’. Differences in body size/shape between 2 May 2018 conspecifics from different climates are well-known in mammals, could relatively flexible size/shape Accepted 22 May 2018 have been important to Homo adapting to cold habitats? If so, at what point did this evolutionary stragegy arise? To address these questions a base-line for adaptation to climate must be established by comparison with outgroups. We compare skeletons of Japanese macaques from four latitudes and find Keywords: Adaptation inter-group differences in postcranial and cranial size and shape. Very small body mass and cranial size in Variation the Southern-most (island) population are most likely affected by insularity as well as ecogeographic Colonisation scaling. -
Cranio-Orbito Zygomatic Normative Measurements in Adult Sudanese: CT Based Study
Global Advanced Research Journal of Medicine and Medical Sciences (ISSN: 2315-5159) Vol. 4(11) pp. 477-484, November, 2015 Available online http://garj.org/garjmms Copyright © 2015 Global Advanced Research Journals Full Length Research Paper Cranio-Orbito Zygomatic Normative Measurements In Adult Sudanese: CT Based Study Maisa Mohammed Elzaki 1, Caroline Edward Ayad 2*, Hussein Ahmed Hassan 2, and Elsafi Ahmed Abdalla 2 1Alzaiem Alazhari University, Faculty of Radiology Science and Medical Imaging, P.O. Box 1432 Khartoum North, Sudan 2Sudan University of Science and Technology, College of Medical Radiological Science, P.O. Box 1908, Khartoum, Sudan Khartoum-Sudan Accepted 19 November, 2015 The measurements of craniofacial parameters have clinical and anthropologic significance. Local data on Cranio-orbito zygomatic normative measurements reveal the pattern of changes in craniofacial features resulting from gender and age. In the present study, we provide normative data on anthropometric variation within the normal adult Sudanese measurements by using computerized tomography (CT) images and to determine the effects of age and gender on anthropometry. A systematic method was obtained to align head (CT) images for both axial and coronal assessment, and to measure the variable parameters obtained from 110 Sudanese subjects in both genders and in different age groups ( ≤20 ≥61years). To quantify the orbits: 4 measurements were collected along both orbits including orbital breadth, height, bi orbital roof and anterior inter orbital distance; 2 for zygomatic bones including bi zygomatic breadth and zygomatic arches length, 2 for cranium counting length and width were also measured. All measurements were taken in (mm). As a result; measurements of the orbita, zygomatic arches and cranium were found to be higher at the age of 51-61 years and showed similar measurements attainment at this age with no significant difference detected at various age intervals. -
Page 1 of 84 STANDARD OPERATING PROCEDURE FOR
STANDARD OPERATING PROCEDURE FOR MICROSCRIBE 3-DIMENSIONAL DIGITIZER AND CRANIOMETRIC DATA Forensic Anthropology Division Harris County Institute of Forensic Sciences 1861 Old Spanish Trail Houston, TX 77054 Julie M. Fleischman, Ph.D. Christian M. Crowder, Ph.D., D-ABFA January 7, 2019 Funding This project was supported by Award No. 2016-DN-BX-K003, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. Suggested Citation Fleischman JM, Crowder CM. 2018. Standard Operating Procedure for MicroScribe 3- Dimensional Digitizer and Craniometric Data. Harris County Institute of Forensic Sciences, Forensic Anthropology Division: Houston, TX. Acknowledgements National Institute of Justice; Harris County Institute of Forensic Sciences (HCIFS); Luis A. Sanchez, M.D.; HCIFS Forensic Anthropology Division staff; Michal L. Pierce, M.S. and the HCIFS Quality Management Division staff; M. Katherine Spradley, Ph.D. and the Texas State University Forensic Anthropology Center’s faculty and staff; Stephen Ousley, Ph.D.; Joseph Hefner, Ph.D.; Richard Jantz, Ph.D.; Lee Meadows Jantz; Ph.D.; Natalie Langley, Ph.D.; Bradley Adams, Ph.D.; and Christopher Rainwater, M.A.. Contacts Julie M. Fleischman, Ph.D.: [email protected] Christian M. Crowder, Ph.D.: [email protected] Page 1 of 84 PREFACE This document was developed as a component of the 2016 Assessing Cognitive Bias, Method Validation, and Equipment Performance for the Forensic Anthropology Laboratory project funded by the National Institute of Justice. -
Chin and Malar Augmentation
CHIN AND MALAR AUGMENTATION SOROUSH ZAGHI, MD INTRODUCTION EVALUATION OF CHIN PROJECTION Chin projection should approach a line perpendicular to the Frankfurt horizontal at vermilion border of lower lip. ZERO MERIDIAN OF GONZALES-ULLOA A line perpendicular to the Frankfort horizontal line is projected through the nasion. Legan’s angle Contained by lines from the glabella to the subnasale and the subnasale to the soft-tissue pogonion. This should be 12 ± 4 degrees for appropriate chin projection. MERRIFIELD Z ANGLE Contained by the Frankfort horizontal line and a line connecting the soft-tissue pogonion to the most anterior part of the lip. The Z angle should be 80 ± 5 degrees. PRE-OPERATIVE CONSIDERATIONS • Skin texture • Anatomic proportions • Prior facial trauma • Emotional stability • Aging face: Soft tissue ptosis, jowls, Marionette lines • Occlusal relationship: Microgenia, Micrognathia, Retrognathia. PATIENT WITH JOWLS • 35 F – Before and 4 months after chin implant with liposuction from jowls and submental area. PATIENT WITH RETROGNATHIA • Patient with retrognathia, voluntary protrusion of jaw (better candidate for mandibular advancement) • Patient with retrognathia and chin implant (deepened labiomental fold). Lower lip analysis- Labiomental fold • Position of the labiomental fold determines the chin pad percentage of the lower facial height. • High labiomental fold Poor candidate. Augmentation will enlarge the entire lower face. • Low labiomental fold Good candidate. Augmentation will accentuate the chin only. LOW LABIOMENTAL FOLD • Patient with low labiomental fold • Before and after chin augmentation. CHIN PAD THICKNESS • Soft tissue thickness: normal= 8 to 11 mm. • Cephalogram demonstrating a very thick chin pad. • Avoid setting back jaws with thick pads; leads to bony irregularities, soft tissue pad ptosis and an unsupported chin pad. -
Intracranial Extension of an Orbital Epidermoid Cyst
CASE REPORTS Intracranial Extension of an Orbital noted to be encapsulated and densely adherent to the underlying dura. There was severe destruction and thinning of the supero- Epidermoid Cyst lateral orbital rim and roof and the cyst lining was most adherent Jordan M. Burnham, M.D., and Kyle Lewis, M.D. in this area requiring polishing with a diamond burr. The tumor was casseous with yellow-tan keratin-like substance through- Abstract: Epidermoid and dermoid cysts represent the out. Histopathologic examination revealed numerous sheets most common cystic lesions of the orbit and commonly of anucleate squames and keratin debris with a lack of dermal arise from bony sutures or the intradiplpoic space of orbital appendages. The lateral wall was reconstructed using a medpor bones. Massive intracranial extension of an epidermoid cyst sheet fixated to the cranial bone flap and the orbital rim was arising from the intradiploic space of an orbital bone is very replated with 2 titanium C-plates. The patient did well postop- rarely seen. We present a case of a 55-year-old male who was eratively and experienced no complications. incidentally found to have massive intracranial extension of an intradiploic epidermoid cyst of the superolateral orbital DISCUSSION bone with minimal symptoms. The cyst was completely excised via a pterional craniotomy and lateral orbitotomy by Dermoid and epidermoid cysts are among the most com- neurosurgery and oculoplastic surgery teams. The patient mon space occupying lesions of the orbit and typically arise suffered -
A 3D Stereotactic Atlas of the Adult Human Skull Base Wieslaw L
Nowinski and Thaung Brain Inf. (2018) 5:1 https://doi.org/10.1186/s40708-018-0082-1 Brain Informatics ORIGINAL RESEARCH Open Access A 3D stereotactic atlas of the adult human skull base Wieslaw L. Nowinski1,2* and Thant S. L. Thaung3 Abstract Background: The skull base region is anatomically complex and poses surgical challenges. Although many textbooks describe this region illustrated well with drawings, scans and photographs, a complete, 3D, electronic, interactive, real- istic, fully segmented and labeled, and stereotactic atlas of the skull base has not yet been built. Our goal is to create a 3D electronic atlas of the adult human skull base along with interactive tools for structure manipulation, exploration, and quantifcation. Methods: Multiple in vivo 3/7 T MRI and high-resolution CT scans of the same normal, male head specimen have been acquired. From the scans, by employing dedicated tools and modeling techniques, 3D digital virtual models of the skull, brain, cranial nerves, intra- and extracranial vasculature have earlier been constructed. Integrating these models and developing a browser with dedicated interaction, the skull base atlas has been built. Results: This is the frst, to our best knowledge, truly 3D atlas of the adult human skull base that has been created, which includes a fully parcellated and labeled brain, skull, cranial nerves, and intra- and extracranial vasculature. Conclusion: This atlas is a useful aid in understanding and teaching spatial relationships of the skull base anatomy, a helpful tool to generate teaching materials, and a component of any skull base surgical simulator. Keywords: Skull base, Electronic atlas, Digital models, Skull, Brain, Stereotactic atlas 1 Introduction carotid arteries, among others. -
3.4.12.9 the Temporal Bone of Patient Ip
3.4.12.9 The Temporal Bone of patient Ip Distances (Figure 3.30(n)): Squamous Temporal Bone: The squamous temporal bone was not measurable in this child due to lack of visibility of the asterion (as), sphenion (spt) and the stylomastoid foramen (smÐ. Extemal Auditory Meatus: The configuration of the external auditory meatus was abnormal and asymmetrical, with increased distances recorded on both sides (eampl-pol, pol-eamal, eamir- eampr, eamar-eamir). Zygomatic Process: The length of the zygomatic arch (ztl-aul, ztr-aur) was decreased bilaterally. The articular fossa height (afl-ael, afr-aer) was normal, however, posteriorly the left EAM- articular fossa length (eamal-afl) was increased. Petrous Temporal Bone (Figure 3.30(o)): The prominence of the mastoid process (mal-jfl1, mar-jflr) was increased bilaterally compared with the experimental standard. The distances of the temporal bone showed the right jugular foramen to be narrowed (flr-jfmr) with an similar tendency on the left. The inferior petrous temporo-occipital suture (fml-ptsl, jfrnr-ptsr) was increased in length. Dimensions (Figure 3.30(o)): The petrous temporal ridge distance (petal-petpl, petar-petpr) was increased bilaterally. The dimensions between the temporal bones was increased between the external auditory meatus (pol-por). The angles of the auditory canal (pol-iamViamr-por), the petrous temporal bone angles (petpl-petaVpetar-petpr) and the zygoma projection (petal-aul-ztl, petar-aur-ztr) were not significantly different from the experimental standard. Discussion: Bony distortion was found at the external auditory meatus and the zygomatic arch which was reduced in length. The jugular foramen was nanowed while the temporal occipital suture medially and the distance to the mastoid laterally were increased.