Redton Property

Total Page:16

File Type:pdf, Size:1020Kb

Redton Property 2005 Assessment Report Takla - Redton Property Claims CS001- 128, HS001 - 135, EXT001-003, King, TwinO5, Twin 0502, HAL 1. Geological Data Compilation, Geophysical Surveys, Prospecting, Interpretation and Probabilistic Targeting for Porphyry Copper Deposits Omineca Mining Division NTS 93N/3,6,7,10,11 4 Dl "W." Claim Owners: Redton Resources Inc. C, -.. I z5 " 1 Claim Operators: Geoinformatics Exploration Inc. Report By Tony Worth Gerry Bidwell March 2006 Geoinformatics Exploration Inc Suite 304,700 West Pender Street Vancouver, British Columbia, Canada V6C 1G8 Executive Summary The Redton Property is an alkali porphyry copper-gold project located in the Quesnellia region of northern British Columbia, Canada. The property is located within close proximity to known alkali porphyry copper-gold deposits at Mt Milligan (445Mt @ 0.215% Cu, 0.415gt Au), Chuchi Lake (50Mt @ 0.21% Cu, 0.21glt Au) and Lorraine (31.9Mt @ 0.66% Cu, 0.17glt Au, 4.7gh Ag). The property is owned by Redton Resources Inc. with Geoinformatics Exploration Inc. currently earning an 85% interest by spending $4.75M on exploration over 5 years. Included in the option agreement is the Takla-Rainbow property, currently under option to Redton Resources Inc. from prospector Mr Lome Warren. Work on the property in 2005 comprised a thorough process of: digital data capture and integration, interpretation of geoscience data, and application of a rigorous process of generating targets for alkalic porphyry copper-gold deposits. Data was compiled from various open file sources for the project and included: - 123 drill holes, including lithology logs and assays - 26 geological outcrop and interpretation maps - 15 geophysical datasets including magnetics, gravity, radiometrics and induced polarisation surveys - 22,982 located geochemistry samples - Mineral occurrence data from the BCGS Minfile database. In addition to compiling historical data the entire project area was flown with detailed magnetics and radiometrics in two separate surveys in 2005. The historical data compilation and detailed magnetics and radiometrics formed the basis of detailed lithological, geochemical and structural interpretations. These were subsequently used to generate targets using a Geoinformatics-refined targeting process known as MOCA. The MOCA targeting process is a model-driven method of targeting for mineral deposits using Monte Carlo probabilistic algorithms in order to incorporate uncertainty and risk into the targeting procedure. A total of 32 areas were defined as targets and subsequently ranked according to MOCA probabilities and degree of previous exploration. Several of the high ranked targets also have complementary empirical anomalism, such as zoned multi-element geochemical anomalies, IP chargeability and magnetic anomalies. The highest ranked targets will form the basis for exploration in the 2006 field season, with an extensive field program planned including drilling of four to six targets. TABLE OF CONTENTS .. Executive Summary ................................................................................................11 .. List of Tables ......................................................................................................... "1 1.0 Introduction ...................................................................................................... 1 1. 1 Preamble .....................................................................................................................1 1.2 Project History ............................................................................................................1 1.3 Location and Acces s. ................................................................................................... 2 1.4 Tenure........................................................................................................................ 2 2.0 Geological Setting .............................................................................................4 2.1 Regional Overview ..................................................................................................... 4 2.2 Stratigraphy ............................................................................................................... 4 2.3 Intrusions .................................................. .......................................................5 2.4 Structural Setting....................................................................................................... 6 2.5 Metamorphism ........................................................................................................... 7 2.6 Mineral Deposit Styles ............................................................................................... 7 2.7 2005 Prospecting ........................................................................................................ 7 3.0 Data Compilation ......................" ..................................................................... 9 3.1 Data Audit ................................................................................................................... 9 3.2 Data Capture.............................................................................................................. 9 3.2.1 Geology ......................................................................................................... 10 3.2.2 Geophysics .................................................................................................... 1 1 3.23 Geochemistry .................................................................................................. 14 3.2.4 Drilling .......................................................................................................... 15 3.2.5 Geographic Data ........................................................................................ 16 3.2.6 Mineral Occurrence Data ............................................................................... 16 4.0 Data Processing .............................................................................................. 18 4.1 Geology .................................................................................................................... 18 4.2 Geophysics.......................................................................................................... 18 4.3 Geochemistry ........................................................................................................... 28 4.4 Drilling Data ............................................................................................................28 4.5 Topographic Data .................................................................................................. 28 4.6 Remote Sensing........................................................................................................ 29 iii 5.0 Interpretation .................................................................................................. 30 6.0 Targeting......................................................................................................... 31 7.0 Conclusions And Recommendations............................................................ 36 8.0 References ....................................................................................................... 37 9.0 Statement of Qualifications............................................................................ 38 Appendix 1 Redton Project Library Index Appendix 2 Redton Project Lithology Coding System Appendix 3 Redton Project Lithology Colour Legend Appendix 4 Fugro Airborne Magnetics / Radiometrics Survey Specifications Appendix 5 Aeroquest Report on Helicopter-Borne Gamma Ray Spectrometer and Magnetic Gmdiometer Survey, TabRedton Property Appendix 6 Redton Project Geochemistry Database Extract Appendix 7 I0Geochemistry, Redton Geochemical Summary Appendix 8 Redton Project Drill Hole Database - Collar File Extract Appendix 9 Redton Project Remote Sensing Report By AGARSS: ASTER Alteration Mineral Mapping Appendix 10 Probabilistic Targeting Using MOCA Appendix 11 Redton Project Target List Appendix 12 Claim Listing Appendix 13 Statement of Costs (Expenditures & Assessment Data) List of Figures Figure 1.1 Redton Project Location Plan (Claim Area Shown in Orange) Figure 1.2 Redton Property Claim Map Figure 3.1 Redton Project Outcrop Geology Compilation Map Figure 3.2 Geophysical Survey Coverage for the Redton Project Figure 3.3 Redton Project 2005 Detailed Magnetics Survey - Reduced to Pole Magnetic image Figure 3.4 Redton Project 2005 Detailed Radiometrics Survey - Potassium Image Figure 3.5 Redton Project 2005 Detailed Radiometrics Survey - Uranium Image Figure 3.6 Redton Project 2005 Detailed Radiometrics Survey - Thorium Image Figure 3.7 Redton Project Compiled Geochemistry Sample Locations Figure 3.8 Redton Project Compiled Drill Hole Location Plan Figure 4.1 Redton Project 2005 Detailed Magnetics Survey - Various Filtered Magnetic images Figure 4.2 Redton Project 2005 Detailed Magnetics Survey - Magnetic Worms Figure 4.3 Redton Project 2005 Detailed Magnetics Survey - Polygons Derived from the Geoinformatics "Auto Intrusion" Filter Figure 4.4 Redton Project 2005 Detailed Magnetics Survey - Inversion Model Figure 4.5 Redton Project Regional Gravity Data - Various Filtered images Figure 4.6 Redton Project 2005 Detailed Radiometrics Survey - Processed Products, K/Th and K2/Th Images, KZ/Thpolygonised highs Figure 4.7 Compilation of IP Surveys for the Redton Project. Figure 4.8 Redton Project Compiled Geochemistry
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Molybdenum in Natural Waters: a Review of Occurrence, Distributions and Controls
    Applied Geochemistry 84 (2017) 387e432 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Invited Review Molybdenum in natural waters: A review of occurrence, distributions and controls * Pauline L. Smedley a, , David G. Kinniburgh b a British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK b Formerly British Geological Survey, Wallingford, Oxfordshire, OX10 8BB, UK article info abstract Article history: Molybdenum is an essential trace element for human, animal and plant health and has played an Received 3 January 2017 important part in the evolution of life on earth. Nonetheless, exposure to the element can be harmful and Received in revised form although the evidence for symptoms in humans is sparse, it has been linked with a number of health 29 April 2017 conditions in animal models. Molybdenum is present in trace quantities (1e10 mg/kg) in most rocks and Accepted 2 May 2017 soils and at concentrations less than, and often orders of magnitude less than, 10 mg/L in most fresh- Available online 6 May 2017 waters. It is the most abundant transition metal in open seawater (10 mg Mo/L) owing to the dominance, 2- Editorial handling by Prof. M. Kersten and low chemical reactivity, of the molybdate ion (MoO4 ). The 2011 WHO Guidelines for Drinking-Water Quality (fourth edition) advised a health-based value of Keywords: 70 mg/L for Mo but this is no longer promulgated as a formal guideline value as WHO consider such Groundwater concentrations to be rarely found in drinking water. This is indeed usually the case, but there are in- Redox stances where currently-used drinking waters do exceed 70 mg Mo/L.
    [Show full text]
  • Nomenclature of the Garnet Supergroup
    American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Nomenclature of the Garnet Supergroup
    American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively.
    [Show full text]
  • Geochemistry of Fluid Inclusions and Hydrothermal Alteration Vein- and Fracture-Controlled Mineralization, Stockwork '• Molybdenum Deposits
    GEOCHEMISTRY OF FLUID INCLUSIONS AND HYDROTHERMAL ALTERATION VEIN- AND FRACTURE-CONTROLLED MINERALIZATION, STOCKWORK '• MOLYBDENUM DEPOSITS by MARK STEPHEN BLOOM BSc, New Mexico Institute of Mining and Technology, 1972 MSc, New Mexico Institute of Mining and Technology, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department - of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1983 © Mark Stephen Bloom, 1983 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Geological Sciences The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 16 April, 1983 Abstract Molybdenum mineralization and coextensive alteration at Questa, Hudson Bay Mountain, and Endako occur in single/composite veinlets which exhibit distinctive alteration assemblages and paragenesis. Fluid inclusion populations from each ve'inlet type are compositionally distinct. Early fluorine rich, biotite-stable alteration is associated with hypersaline brines. These inclusions homogenize most frequently by halite dissolution at temperatures from 350°-600°+C. Molybdenum miner alization also coincides with quartz-sericite-pyrite alteration and inclusions having moderate to high salinity and lower (£350°C) temperatures of entrapment.
    [Show full text]
  • Major, Trace, and Rare-Earth Element Geochemistry of Nb-V Rich
    minerals Article Major, Trace, and Rare-Earth Element Geochemistry of Nb-V Rich Andradite-Schorlomite-Morimotoite Garnet from Ambadungar-Saidivasan Alkaline Carbonatite Complex, India: Implication for the Role of Hydrothermal Fluid-Induced Metasomatism Amiya K. Samal 1 , Rajesh K. Srivastava 1,* and Dewashish Upadhyay 2 1 Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi 221005, India; [email protected] 2 Department of Geology and Geophysics, Indian Institute of Technology (IIT), Kharagpur 721 302, India; [email protected] * Correspondence: [email protected] or [email protected] Abstract: In situ major, trace and rare-earth element composition of Ti-rich garnets from Ambadungar- Saidivasan alkaline carbonatite complex (ASACC) are presented to constrain its likely genesis. The garnets are characterized by high andradite (42.7–57.3), schorolomite (22.0–31.0), and morimotoite (15.6–26.5) end members. No distinct chemical zonation is noticed except for minor variations in Ti content. The garnets are enriched in LREE (average 731 ppm) and relatively depleted in HREE Citation: Samal, A.K.; Srivastava, (average 186 ppm) and show an M-type first tetrad that leads to a convex upward pattern between R.K.; Upadhyay, D. Major, Trace, and Ce and Gd. Mildly positive to no Eu anomalies are observed (Eu/Eu* = 1.06–1.17). The REE patterns Rare-Earth Element Geochemistry of (LaN/YbN = 1.11–2.11) are similar to those of garnets from skarn deposits. The presence of tetrad Nb-V Rich Andradite-Schorlomite- effect in the LREE pattern suggests an active role of metasomatic processes involving hydrothermal Morimotoite Garnet from fluids during the growth of the garnets.
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • ON the VATIDITY of CALDERITE PETEJ. DUNN Department Ol
    Canadian Mineralogist Vol. 17, pp.569-571 (1979) ON THE VATIDITY OF CALDERITE PETEJ. DUNN Department ol Mineral Sciences,Srnithsonian Institution, Washington, D.C. 20560, USJ. Ansrnacr A second occurrence of calderite was noted by de Villiers (1951), and the rnaterial was A garnet sample from Otjosondu, Namibia subsequently re-examined by Vermass (1952). (Soutlwest Africa) is re-examinedand found to In a third description, Klein (1966) described contain -50 mol. Vo of the calderite component. some calderitesfrom the WabuShiron formation The new data support older investigationsand- in southwestern- -.-;:- - - Labrador. In spite of these ideallv establish the legitimacy of calderite, ;- , , in MngFes+g(Sioa)r,as a speciesof the garnetgroupv. descriptio-ns'calderite remains unrecognized rhe ramiie stue'ieah^;li3ii1E,";;1.Fi;6; most reference works as a legitimate end- and D(obs.) 4.05 s/cms, Microprobeanalysis yields member of the garnet group. ths empirical formula (Mns.ssCas.re):u.rr(Fet*r.o, Alr.zaMgo.rgTio.os)s.0?(Si6.04Alo.ou) O-. Tbe oxidation staiJ of iiie f.;;;; iatiutiiea io tit ttr" valence Cnnnrsrnv requirements of garnets. Ct is proposed as an acronym for calderite. The sample studied was analyzed with an ARL-SEMQ electron microprobe using an oper- ating voltage of 15 kV and a beam current of SoMrvrerns 0.15 pA. The data were corrected for back- ground, backscatter absorption and fluorescence r6examen, un 6chantillon de grenat de Au used were Otjosondu (Namibie) s'avbrecontenir -5OVo (mol.) using Bence-Albee factors. Standards du p6le calddrite [ct: MngFes+r(SiOo)r],dont la a magnesian ferroan grossular for alu'minum validit6 commo membre de la famille des grenaJs and silicon, manganite for manganese, horn- est confinnde.Les mesuresdonnent a 11.81(1)A, blende for magnesium, calcium, iron and ti- no 1,875(2) et Do6 4.05.L'analyse i la microsonde tanium, and chromite for chromium.
    [Show full text]
  • Manganese-Rich Minerals of the Pumpellyite Group from The
    American Mineralogist, Volume 76, pages241-245, 1991 Manganese-richminerals of the pumpellyite group from the Precambrian SausarGroup, India SoNrN,c,rH D.q.scur.rlo SlN.lrn Crrarnnnonrr, Puu,x SnNcurrl., P. K. Bn,c.rrAcHARyA, H. Bmwnrnn, Surnrva Rov Department of Geological Sciences,Jadavpur University, Calcutta 700 032, India M. Furuoxr, Department of Earth and Planetary Sciences,Klushu University, Fukuoka, Japan Ansrucr Mn-rich minerals of the pumpellyite group are developed in Mn oxide ores of the Precambrian SausarGroup, India. The ores were intruded by late pegmatite dikes and calcite veins. A hydrothermal origin for thesephases through Ca-Mg-Fe-Al metasomatism is evident from their mode of occurrenceand textures. The phasesstudied show wide- spreadsubstitution between Mn3+ and Al in the l-site and between Mn2+ and Mg in the X-site. An Mg equivalent of okhotskite, reported for the first time, is present.This study establishesthat okhotskite representsthe Mn3+ end-member of the pumpellyite group of minerals and that solid solution between pumpellyite (Al dominant) and okhotskite is nearly complete. INrnonucrroN dition to pumpellyite, diverse Ca-Mg-Mn-Al-Na silicates piemontite Minerals with the pumpellyite structure having the such as tirodite, Mn-rich pyroxene, and have general formula (Ca,K,Na)r(Mn2+,A13+Mg,Fe,*)o(F€,*,-developed at the contact ofpegmatite dikes and the ores Al3*,Ti4*,Mn3*)8Si,2O56_,(OH),are named on the basis (Roy and Purkait, 1968).Samples of pumpellyite-bearing ofrelative concentration oftrivalent cations in their oc- rocks describedin this work were collected from a small tahedral sites. The phase is called pumpellyite if Al is outcrop of Mn ores at the contact of pegmatite dikes and dominant; ifFe3+ is dominant it is designatedas julgoldite calcite veins.
    [Show full text]
  • The Canadian Mineralogist
    VOLUME 38, INDEX 1493 THE CANADIAN MINERALOGIST INDEX, VOLUME 38 J. DOUGLAS SCOTT 203-44 Brousseau Avenue, Timmins, Ontario P4N 5Y2, Canada AUTHOR INDEX 4+ Alviola, R. with Mancini, F., 1103 Burns, P.C., Clark, C.M. & Gault, R.A., Juabite, CaCu10(Te O3)4 Appleyard, E.C. with Elliott-Meadows, S.R., 545 (AsO4)4(OH)2(H2O)4: crystal structure and revision of chemi- Arima, M. with Pati, J.K., 1177 cal formula, 809 Bai, Wenji, Robinson, P.T., Fang, Qingsong, Yang, Jingsui, Yan, Burns, P.C. & Hill, F.C., A new uranyl sheet in K5[(UO2)10O8 Binggang, Zhang, Zhongming, Hu, Xu-Feng, Zhou, Mei-Fu (OH)9](H2O): new insight into sheet anion-topologies, 163 & Malpas, J., The PGE and base-metal alloys in the podiform Burns, P.C. & Hill, F.C., Implications of the synthesis and struc- chromitites of the Luobusa ophiolite, southern Tibet, 585 ture of the Sr analogue of curite, 175 Bali´c-Zuni´ˇ c, T. with Topa, D., 611 Burns, P.C. with Krivovichev, S.V., 719, 847 Ballirano, P., Bonaccorsi, E., Maras, A. & Merlino, S., The crystal Burns, P.C. with Li, Yaping, 153, 715, 729, 739, 1433 structure of franzinite, the ten-layer mineral of the cancrinite Burns, P.C. with Mitchell, R.H., 145, 617 group, 657 Burwash, R.A., Krupicka, J. & Wijbrans, J.R., Metamorphic evo- Barkov, A.Y., Martin, R.F., Poirier, G. & Men’shikov, Yu.P., lution of the Precambrian basement of Alberta, 423 Zoned tungstenoan molybdenite from a fenitized megaxeno- Cabri, L.J., Newville, M., Gordon, R.A., Crozier, E.D., Sutton, lith in the Khibina alkaline complex, Kola Peninsula, Rus- S.R., McMahon, G.
    [Show full text]
  • Metamorphic and Metamorphogenic Ore Deposits
    Geological and Atmospheric Sciences Publications Geological and Atmospheric Sciences 1998 Metamorphic and Metamorphogenic Ore Deposits Paul G. Spry Iowa State University, [email protected] Jan M. Peter Geological Survey of Canada John F. Slack U.S. Geological Survey Follow this and additional works at: https://lib.dr.iastate.edu/ge_at_pubs Part of the Geochemistry Commons, Geology Commons, Mineral Physics Commons, Sedimentology Commons, and the Stratigraphy Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ge_at_pubs/355. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Geological and Atmospheric Sciences at Iowa State University Digital Repository. It has been accepted for inclusion in Geological and Atmospheric Sciences Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Metamorphic and Metamorphogenic Ore Deposits Abstract Meta-exhalites consist of a variety of rock types including iron formation, coticule (garnet-quartz rock), tourmalinite, quartz-gahnite rock, apatite-rich rock, zincian staurolite-bearing rock, and barite-rich rock. Such lithologies may be spatially associated with a diversity of ore deposits, but they are particularly linked to sea floor base metal sulfides that formed in rift settings. Meta-exhalites generally form layers less than 2 m thick, above, below, in, and along strike from stratiform or exhalative ore deposits. Geochemical diagrams for iron formations, coticules, and tourmalinites (chondrite-normalized rare earth element (REE), ternary Al-Fe-Mn, Al/(Al + Fe + Mn) vs.
    [Show full text]