HS2 Gauging – the Uniform Structure Gauge (USG)

Total Page:16

File Type:pdf, Size:1020Kb

HS2 Gauging – the Uniform Structure Gauge (USG) TECHNICAL ARTICLE AS PUBLISHED IN The PWI Journal January 2020 VOLUME 138 PART 1 #thepwi thepwi.org PermanentWayInstitution @PermWayInstit Permanent Way Institution @the_pwi If you would like to reproduce this article, please contact: Kerrie Illsley JOURNAL PRODUCTION EDITOR Permanent Way Institution [email protected] PLEASE NOTE: Every care is taken in the preparation of this publication, but the PWI cannot be held responsible for the claims of contributors nor for the accuracy of the contents, or any consequence thereof. HS2 Gauging – The Uniform Structure Gauge (USG) AUTHOR INTRODUCTION EXAMPLES OF TYPICAL AREAS WHERE GAUGING IS REQUIRED Gauging is an integral part of any railway Klaus Pajung system. This paper describes the HS2 approach Typically, gauging is required for the following Senior Permanent Way to gauging and it shows how HS2 established scenarios: Design Engineer 4 different Uniform Structure Gauges (USG) which suit their specific infrastructure. The paper CLEARANCES TO STRUCTURES AND Klaus is a Senior also provides an overview on how USGs are EQUIPMENT Permanent Way calculated. Design Engineer with The most common structures and equipment to an overall experience BACKGROUND stay clear of comprise: of 17 years. He is a Chartered Engineer in Germany (Diplom Every Railway Infrastructure manager has to 1. Overbridges (soffit and abutments) Ingenieur - FH). ensure that the type of rolling stock on their system can be run in a safe manner from a spatial 2. Tunnels including evacuation walkways Klaus came to the UK in 2005 and stayed perspective, ie the trains don’t hit parts of the and associated equipment (e.g. ventilation with Atkins in Birmingham for the following infrastructure or other trains. This is achieved fans, OLE, cable troughs etc.) 3 years. There he mainly worked on S&C by means of ‘Gauging’. For HS2 gauging the schemes at various design stages. TSI is applicable which refers to Euro Norms 3. Lineside equipment such as signals, (EN) to determine structure gauges for new and masts, posts, speed boards etc. Klaus then moved on to Halcrow in London interoperable infrastructure. who he is still with, (now Jacobs). There he 4. Platform offsets. Platforms are special worked on NR schemes at various GRIP In general, a structure gauge is an envelope structures, as trains have to pass them stages, TfL projects and international describing an area that must not be infringed by at a relatively close distance. This is projects. any infrastructure or lineside equipment under because of a ‘conflict of interest’ between any condition (see figure 8). structural clearances and appropriate He is currently seconded to HS2 where he stepping distances. A sufficient clearance is looking after the track alignment including Even though EN calculation methods for structure to the platform is essential and has to be the associated standard, the S&C geometry gauges are predetermined, the Infrastructure guaranteed for stopping and potentially standard and the gauging standard. manager has options to create different structure for fast, non-stopping trains. However, for gauges that suit their specific needs. For passenger friendly stepping distances, example, they might want to have a ‘Uniform trains need to be as close to the platform Structure Gauge’ (USG) which is applicable to as possible. specific areas such as tunnels, the open route, stations, station approaches, depots etc. TRACK SPACING AND PASSING CLEARANCES The following points will give the reader some general background on gauging. Track spacing is the distance between railway tracks. For NR, a standard spacing is 1970 mm WHAT IS GAUGING? between the running edges of the rails on straight track which equates to 3.405 m between track Gauging is the process for ensuring that trains centre lines (CL). For HS2, the track spacing, which are used on a specific section of track and measured from CL to CL, is dependent on the railway infrastructure are compatible in terms speed. This is because with increasing speeds, of spatial relationship. These days gauging is a aerodynamic considerations must be taken into scientific method which creates an artificial train consideration. HS2 uses track spacings which envelope that is greater than the physical train, are compliant with the TSI and which are similar taking into considerations items such as track to other European high-speed administrations. geometry and speed amongst others. Therefore, no analysis needs to be undertaken to prove these track spacings are sufficient. As the Independent of the gauging method used (see TSI only covers speeds of up to 350 km/h, a track further below), the resultant envelope determines spacing of 4.7 m has been specified by HS2 for the space that must not be infringed on by any speeds between 350 km/h and 400 km/h. This is part of the infrastructure or line side equipment. 0.2 m wider than the track spacing required by the The resultant envelope might be called Structure TSI for speeds > 350 km/h. HS2 appreciate the Gauge (eg in the EN) or the Swept Envelope fact that future improvements in aerodynamics in other standards. The latter usually requires might have to be achieved so the speed could be additional distances (clearances) to be kept to the raised to 400 km/h should this be implemented at envelope. some stage in the future. 34 FOULING POINTS HS2 GAUGING Fouling points (FP) are points between the HS2 have 4 USGs as described below. This is through track and the diverging tracks of a to avoid having a single and very large USG turnout or crossover arrangement beyond which would use worst-case input values from which trains would collide if both tracks were across the system. occupied at the same time. To establish the appropriate position of fouling points the On the one hand such a single structure gauge relevant structure gauge (Limit Gauge for EN would be user-friendly for the Infrastructure gauging) must be calculated. See Figure 1 as manager. On the other hand, an oversized an example. single structure gauge would mean that structures or lineside equipment would have GAUGING METHODS to be further away from the tracks, therefore potentially increasing footprint and cost. This is Figure 1: Fouling point as per Spanish gauging There are different gauging methods which are in particularly true for tunnels as with a single standard for through speeds >120 km/h. described as follows: route-wide USG the diameters of many tunnels would have to be increased. ABSOLUTE GAUGING This section provides some background Absolute gauging is mainly used on existing information and detail on various aspects of infrastructure. It is a full assessment of HS2 gauging. clearances on a section of existing track between the vehicle and fixed infrastructure USE OF THE SPANISH GAUGING and the vehicle and vehicles on adjacent STANDARD tracks. These days absolute gauging is executed by means of computer programmes HS2 gauging is based on the Spanish gauging like ClearRouteTM, DGauge etc. These standard (FOM/1630/2015) which is well programmes consider the whole suite of rolling established and has a proven record for high stock used on a section of track with all their speed railways. It is based on EN15273 and in characteristics (static envelope, suspension, fact, is a further development of the EN which bogie distance etc.). They also consider track ‘puts meat on the bone’ in sections where the Figure 2: Typical ClearRouteTM output for related properties (track form, curvature, cant, EN is rather vague. For example, EN15273- structure and passing clearances speed etc.) and wear, likely track movements 3 (section 5.5.3) provides two examples of etc. to calculate a swept envelope. This scenarios for the calculation of USGs which swept envelope is an enlarged version of the might be considered: static envelope and used by the software to determine clearances to the existing • The worst-case situation: Worst-case infrastructure. Most railway administrations input values are considered such as will define a clearance to the swept envelope smallest radius, the maximum cant or that has to be met. For example, NR define a cant deficiency etc, clearance of 100 mm to the Swept Envelope as ‘normal’ in many cases. Figure 2 is a typical • Defining of the gauge with two profiles: Table 1: HS2 Uniform Structure Gauges ClearRouteTM output showing structural and One profile applicable on a straight or passing clearances for a wide range of rolling curved track with very large radii and no stock. cant. Another profile on a curved track designed on the basis of the worst-case COMPARATIVE GAUGING cant and radius situation. Comparative gauging is the process of The Spanish gauging standard describes comparing the swept envelope of a new the second scenario in detail; considering 8 vehicle with the swept envelope of a vehicle or different scenarios as a result (see calculation vehicles which have demonstrated to comply section for more detail). with gauging requirements of a track section. This way conclusions can be drawn on whether The HS2 calculation methodology is based on this new vehicle can be used on a specific this second scenario. route section or not. TYPES OF GAUGES REQUIRED FOR HS2 DEFINED GAUGE METHOD AS PER EURO GAUGING NORM EN 15273 HS2 use the following types of gauges in their The defined gauge method described in EN standard: 15273 (Parts 1 and 3) is split into 3 main methods: • Uniform Structure Gauge (USG). The Figure 3: Overlay of area-wide USG (black) USG is used to determine the distances A) The static method is used for specific, non- and local USG (red) to be kept to between structures and interoperable networks. equipment and to the trains and therefore to the tracks. HS2 developed 4 different B) The dynamic method is used on certain USGs for different areas of application networks with the aim of optimising the space along the route These are summarised available for sizing non-interoperable vehicles.
Recommended publications
  • the Swindon and Cricklade Railway
    The Swindon and Cricklade Railway Construction of the Permanent Way Document No: S&CR S PW001 Issue 2 Format: Microsoft Office 2010 August 2016 SCR S PW001 Issue 2 Copy 001 Page 1 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS 1 Document Status Record Status Date Issue Prepared by Reviewed by Document owner Issue 17 June 2010 1 D.J.Randall D.Herbert Joint PW Manager Issue 01 Aug 2016 2 D.J.Randall D.Herbert / D Grigsby / S Hudson PW Manager 2 Document Distribution List Position Organisation Copy Issued To: Copy No. (yes/no) P-Way Manager S&CR Yes 1 Deputy PW Manager S&CR Yes 2 Chairman S&CR (Trust) Yes 3 H&S Manager S&CR Yes 4 Office Files S&CR Yes 5 3 Change History Version Change Details 1 to 2 Updates throughout since last release SCR S PW001 Issue 2 Copy 001 Page 2 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS Table of Contents 1 Document Status Record ....................................................................................................................................... 2 2 Document Distribution List ................................................................................................................................... 2 3 Change History .....................................................................................................................................................
    [Show full text]
  • Structure Gauge Measuring Equipment Using Laser Range
    PAPER Structure Gauge Measuring Equipment Using Laser Range Scanners and Structure Gauge Management System Takashi TOYAMA Signalling Systems Laboratory, Signalling and Transport Information Technology Division Nozomi NAGAMINE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Tatsuya OMORI Kenichi KITAO Signalling Systems Laboratory, Signalling and Transport Information Technology Division (Former) Ryuta NAKASONE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Periodic measurement of the structure gauge is essential to ensure safe train operation. Measuring the clearance gauge however, is time and labor intensive given the vast number of trackside facilities. An inexpensive and efficient measuring device using laser range scanners was therefore developed. A management system is also being developed, which maps mea- sured three-dimensional point cloud data to facility data. This paper describes the problems and solutions related to applying the laser range scanners for structural gauging, and pres- ents results obtained from experiments. This paper also describes progress achieved in the development of the management system. Keywords: laser range scanner, LiDAR, structure gauge, clearance car, facility management, 3-D point cloud 1. Introduction ing developed. This paper describes the problems and solutions relat- The structure gauge or clearance gauge is the space ed to applying the laser range scanners for structure gaug- around the track, into which no part of a trackside struc- ing, and p resents r esults obtain ed f rom experi ments. This ture shou ld enter o n any a cc ount. Figu re 1 sh ow s an ex- paper a lso des cribes progr es s ach ieved in the dev elopm ent ample of the structure gauge applied on railways in Japan.
    [Show full text]
  • Enhancing Interoperability for Facilitation of International Railway Transport
    ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT This study was prepared by Transport Division ESCAP. The draft of the study was prepared by Mr. Vasile-Neculai OLIEVSCHI, Consultant, under the supervision of Mr. Sandeep Raj Jain, Economic Affairs Officer, Transport Division ESCAP. The views expressed in this guide are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this guide are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations. The designations employed and the presentation of the material in this study do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of firm names and commercial products does not imply the endorsement of the United Nations. This study is issued without formal editing. ______________________ ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT Bangkok, 2018 Table of Contents EXECUTIVE SUMMARY .................................................................................................................... 1 I. BACKGROUND ......................................................................................................................... 3 II. ASIAN
    [Show full text]
  • Network Rail a Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10
    Network Rail A Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10 Alan Baxter Network Rail A Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10 Contents 1.0 Introduction ���������������������������������������������������������������������������������������������������������������������1 2.0 Definitions �������������������������������������������������������������������������������������������������������������������������2 3.0 Why electrify? �������������������������������������������������������������������������������������������������������������������4 4.0 A brief history of rail electrification in the UK �����������������������������������������������������5 5.0 The principles of electrically powered trains ������������������������������������������������������6 6.0 Overhead lines vs. third rail systems ����������������������������������������������������������������������7 7.0 Power supply to power use: the four stages of powering trains by OLE 8 8.0 The OLE system ������������������������������������������������������������������������������������������������������������10 9.0 The components of OLE equipment ��������������������������������������������������������������������12 10.0 How OLE equipment is arranged along the track ������������������������������������������17 11.0 Loading gauges and bridge clearances ��������������������������������������������������������������24 12.0 The safety of passengers and staff ������������������������������������������������������������������������28
    [Show full text]
  • Clearance of Derailment Guards in Metro Systems 1. As Per Para 7.1 Of
    Annexure‐XII Clearance of derailment guards in Metro systems 1. As per para 7.1 of ‘Standards of Track structures for Metro Railway/MRTS system’, the derailment guard should be provided inside/outside of running rail, and the lateral clearance between the running rail and the derailment guard shall be 250±40mm. Thus the maximum clearance permitted is 290mm, and the minimum is 210mm. In the following paras, the impact of this clearance on the safe operation of Metro systems has been analysed. Analysis has also been made to arrive at the minimum up‐stand clearance required to accommodate the various Fastening systems approved for use in the Metro systems. Based on the above analysis, recommendations for the up‐stand clearance has been arrived at. The impact of up‐stand clearance on minimum plinth width requirement has also been brought out. 2. As per SoD generally adopted by Metro systems, the following track and Rolling stock parameters adopted by Metro systems have been taken for the analysis. 2.1. Track. Gauge‐1435mm Rail head width(UIC 60)‐72mm Rail height(UIC 60) ‐172mm. Up‐stand thickness‐200mm 2.2. Rolling stock wheel set. Wheel gauge back to back distance‐1360mm Minimum projection of flange of new wheel‐28mm Maximum projection of flange of worn wheel‐36mm Maximum thickness of wheel flange‐32.5mm Minimum thickness of wheel flange‐22mm Minimum width of wheel‐135± 2.3. Wheel flange clearance to rail gauge face When the wheel set is in central position with respect to track, the clearance between rail and wheel works out to (1435‐1360‐ 2x32.5)/2=5mm.
    [Show full text]
  • GUIDANCE NOTE PERMANENT WAY – Planning, Inspection
    Ref No: HGR-A0401 Issue No: 01 Issue Date: April 2018 HERITAGE RAILWAY ASSOCIATION GUIDANCE NOTE PERMANENT WAY – Planning, Inspection & Maintenance Purpose This document describes good practice in relation to its subject to be followed by Heritage Railways, Tramways and similar bodies to whom this document applies. Endorsement This document has been developed with, and is fully endorsed by, Her Majesty’s Railway Inspectorate (HMRI), a directorate of the Office of Rail and Road (ORR). Disclaimer The Heritage Railway Association has used its best endeavours to ensure that the content of this document is accurate, complete and suitable for its stated purpose. However it makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems of work or operation. Accordingly the Heritage Railway Association will not be liable for its content or any subsequent use to which this document may be put. Supply This document is published by the Heritage Railway Association (HRA). Copies are available electronically via its website https://www.hra.uk.com/guidance-notes Issue 01 page 1 of 11 © Heritage Railway Association 2018 The Heritage Railway Association, Limited by Guarantee, is Registered in England and Wales No. 2226245 Registered office: 2 Littlestone Road, New Romney, Kent, TN28 8PL HGR-A0401-Is01 ______ Permanent Way - Planning, Inspection & Maintenance Users of this Guidance Note should check the HRA website https://www.hra.uk.com/guidance-notes to ensure that they have the
    [Show full text]
  • Transit Space
    Engineering Standard Track CRN CS 215 TRANSIT SPACE Version 1.4 Issued January, 2021 Owner: Manager Engineering Services Approved by: M Wright, Principal Track and Civil Engineer Authorised by: J Zeaiter, Manager Engineering Services Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. UNCONTROLLED WHEN PRINTED Page 1 of 37 CRN Engineering Standard - Track CRN CS 215 Transit Space Document control Revision Date of Approval Summary of change 1.0 August, 2011 First Issue. Includes content from the following former RIC standards: C 2101, C 2102, C 2103, C 2104, C 2105, C 2106, C 2108, C 2111 1.1 July, 2013 6.1.1 – Table 1 – Clarification of the 2150mm horizontal clearance that it relates to below rail level only; 7 – Figure 1 and Figure 2–Removal of Trip Arm Infringement; 7.1.4 – Change to reflect requirement for a minimum
    [Show full text]
  • Tramway Track Standard
    SYDNEY TRAMWAY MUSEUM TRAMWAY TRACK STANDARD MARCH 2016NOVEMBER 2019 SYDNEY TRAMWAY MUSEUM Document Control Record 1. Document Details: Name: Tramway track Standard Number STM6024 Version Number: 1.89 Document Status: Working Draft X Approved for Issue Archived Next Scheduled Review Date: 2. Version History: Version Number Date Reason/Comments 1.0 20/01/2007 Initial issue 1.1 09/01/2009 Changed Report title 1.2 09/07/2009 Added Tie Bar drawing 1.3 31/05/2010 Changes made to satisfy the 2009 ITSRR audit. 1.4 31/07/2010 Changes made to satisfy the 2009 ITSR audit. 1.5 03/09/2010 Updated Appendix D and other minor changes. 1.6 15/05/2011 Added the Pandrol Information as the RNP uses this equipment 1.7 21/8/2015 Added Loading gauge drawing and reference to STM6072 1.8 31/03/2016 Amended Distribution List format Better defining the sleeper standard (Good, Fair, Poor) by photos 1.9 21/11/2019 and description in Section 10.11. Approved by Signature & Date 3. Distribution List Position Date Location of Documents Rail Safety Manager Original held on GOOGLE secure Website STM WEB SITE Updated regularly and put onto the STM Web site. STM Office STM Office Computer STM Office STM Office cupboard STM6024 Tramway track Standard Page 2 of 55 Version 1.9 – 21/11/2019 SYDNEY TRAMWAY MUSEUM 1. Purpose To explain the various tramway track standards at the Sydney tramway Museum. Also the purpose of this document is to set down, in printed form, a history of the construction, operation and maintenance of the STM for the benefit of future generations called upon to further the aims of the society.
    [Show full text]
  • Finished Vehicle Logistics by Rail in Europe
    Finished Vehicle Logistics by Rail in Europe Version 3 December 2017 This publication was prepared by Oleh Shchuryk, Research & Projects Manager, ECG – the Association of European Vehicle Logistics. Foreword The project to produce this book on ‘Finished Vehicle Logistics by Rail in Europe’ was initiated during the ECG Land Transport Working Group meeting in January 2014, Frankfurt am Main. Initially, it was suggested by the members of the group that Oleh Shchuryk prepares a short briefing paper about the current status quo of rail transport and FVLs by rail in Europe. It was to be a concise document explaining the complex nature of rail, its difficulties and challenges, main players, and their roles and responsibilities to be used by ECG’s members. However, it rapidly grew way beyond these simple objectives as you will see. The first draft of the project was presented at the following Land Transport WG meeting which took place in May 2014, Frankfurt am Main. It received further support from the group and in order to gain more knowledge on specific rail technical issues it was decided that ECG should organise site visits with rail technical experts of ECG member companies at their railway operations sites. These were held with DB Schenker Rail Automotive in Frankfurt am Main, BLG Automotive in Bremerhaven, ARS Altmann in Wolnzach, and STVA in Valenton and Paris. As a result of these collaborations, and continuous research on various rail issues, the document was extensively enlarged. The document consists of several parts, namely a historical section that covers railway development in Europe and specific EU countries; a technical section that discusses the different technical issues of the railway (gauges, electrification, controlling and signalling systems, etc.); a section on the liberalisation process in Europe; a section on the key rail players, and a section on logistics services provided by rail.
    [Show full text]
  • Railway Route Design Parameters Outline Gauge
    Trans-AsianRailwav in the Indo-China and ASEANSubreflion: Volume3. Section4 4. RECOMMENDED MINIMUM STANDARDS AND REQUIREMENTS FOR FUTURE TAR NETWORK As mentioned in Section 4 of Volume 2, the primary objective of this study is to recommend minimum technical standards for the future rehabilitation of the existing TAR network, and the new construction of missing links in this network. The recommendations were made in the context of achieving the required operational objectives for the TAR network so as to be more competitive with other transport modes operating in TAR corridors. Principal Railway Route Design Parameters Outline Gauge The minimum clearance is required for the transport of all types of containers including the non-ISO high-cube containers with a maximum gross weight of 35 tonnes and the maximum dimensions of2,896 mm in height, 2,591 mm in width, and 13,716-16,150 mm in length. The platform height of standard container flat wagons is normally 1,010 mm above the rail level. The vehicle gauge which is defined as the limiting dimensions, measured from the centreline of the track, beyond which any part of a vehicle or its load may not protrude, should at least accommodate the minimum clearance mentioned above. The vehicle gauge is static in nature as it implies stationary trains. For moving trains, the vehicle gauge needs to be expanded to allow for dynamic effects such as track irregularity, vehicle vibration, lateral movement of wheel, wearing of wheel, and unbalanced loads on wheels. Generally, 600-800 mm should be added to the width of the vehicle gauge, and 300-400 mm to the height.
    [Show full text]
  • ESC 215 Transit Space, Version 4.9
    Technical Note – TN 005: 2019 For queries regarding this document [email protected] www.transport.nsw.gov.au Technical Note – TN 005: 2019 Issue date: 20 November 2019 Effective date: 20 November 2019 Subject: Updates to ESC 215 Transit Space, version 4.9 This technical note is issued by the Asset Standards Authority (ASA) to notify amendments to ESC 215 Transit Space, version 4.9. It replaces the following technical notes: • TN 026: 2018 Update to ESC 215 Transit Space, version 4.9 to introduce Sub-Medium rolling stock • TN 089: 2015 Update to Medium Electric rolling stock outline diagram in T HR RS 00100 ST (RSU 110) and ESC 215 In addition, this technical note includes amendments to the requirements of Extended Medium, Wide Electric, Out of Gauge Load, NZZA Wagon and ANZR outlines. TN 026: 2018 and TN 089: 2015 will be withdrawn with the publication of TN 005: 2019. 1. Introduction of Sub-Medium rolling stock A new rolling stock outline, to be known as Sub-Medium, will be introduced to the electrified portion of the TfNSW Metropolitan Heavy Rail Network. The Sub-Medium will comply with the Medium Electric rolling stock outline, but have what is termed a two-stage kinematic response. Operating on normal track conditions, Sub-Medium vehicles will be specified to comply with the general kinematic tolerances in Section 10.2 of ESC 215. Under certain prescribed track conditions and speed, these vehicles will be specified to generate a reduced kinematic response. Prior to the deployment of Sub-Medium rolling stock on certain sections of the network, the track width classification of those sections will be altered from Narrow to Sub-Medium or from Narrow to Medium.
    [Show full text]
  • Design Guide for Steel Railway Bridges (P318)
    SCI PUBLICATION P318 Design Guide for Steel Railway Bridges D C ILES MSc ACGI DIC CEng MICE Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN Tel: 01344 623345 Fax: 01344 622944 © 2004 The Steel Construction Institute Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page. Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use. Publications supplied to the Members of the Institute at a discount are not for resale by them. Publication Number: SCI P318 ISBN 1 85942 150 4 British Library Cataloguing-in-Publication Data.
    [Show full text]