The Example of Neisseria Meningitidis. Cyril Guilhen, Muhamed-Kheir Taha, Frédéric Veyrier

Total Page:16

File Type:pdf, Size:1020Kb

The Example of Neisseria Meningitidis. Cyril Guilhen, Muhamed-Kheir Taha, Frédéric Veyrier Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Cyril Guilhen, Muhamed-Kheir Taha, Frédéric Veyrier To cite this version: Cyril Guilhen, Muhamed-Kheir Taha, Frédéric Veyrier. Role of transition metal exporters in virulence: the example of Neisseria meningitidis.. Frontiers in Cellular and Infection Microbiology, Frontiers, 2013, 3, pp.102. 10.3389/fcimb.2013.00102. pasteur-02093303 HAL Id: pasteur-02093303 https://hal-pasteur.archives-ouvertes.fr/pasteur-02093303 Submitted on 8 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PERSPECTIVE ARTICLE published: 23 December 2013 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2013.00102 Role of transition metal exporters in virulence: the example of Neisseria meningitidis Cyril Guilhen , Muhamed-Kheir Taha and Frédéric J. Veyrier* Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France Edited by: Transition metals such as iron, manganese, and zinc are essential micronutrients for Mathieu F.Cellier, Institut National bacteria. However, at high concentration, they can generate non-functional proteins de la Recherche Scientifique, or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or Canada overload, both of which can impair cell survival. In addition, equilibrium among these Reviewed by: Caroline Genco, Boston University metals has to be tightly controlled to avoid molecular replacement in the active site School of Medicine, USA of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet Thomas Kehl-Fie, University of physiological needs within the context of the local environment. When intracellular Illinois, USA buffering capacity is reached, they rely primarily on membrane-localized exporters to *Correspondence: maintain metal homeostasis. Recently, several groups have characterized new export Frédéric J. Veyrier, Département Infection et Epidémiologie, Institut systems and emphasized their importance in the virulence of several pathogens. Pasteur, Unité des Infections This article discusses the role of export systems as general virulence determinants. Bactériennes Invasives, 28 Rue du Furthermore, it highlights the contribution of these exporters in pathogens emergence Dr. Roux, 75015 Paris, France with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis. e-mail: [email protected] Keywords: virulence factors, Neisseria meningitidis, metals, exporter, efflux INTRODUCTION to call attention to these efflux systems as virulence factors, For decades, it has been known that transition metals played a as they have received less attention than metal importer sys- role in regulating host pathogen relationships (Weinberg, 1971; tems. This article offers a brief perspective of the different Finkelstein et al., 1983). Bacterial pathogens must acquire these families of metallo-exporters and a discussion of their general metals in order to survive in the host during an infection. Metals importance in the virulence of bacterial pathogens with empha- such as Fe, Mn, Zn, Ni, Cu, Co, and Mo (Schaible and Kaufmann, sis on Neisseria meningitidis,anobligatehumanrespiratory 2005) have an incomplete “d” orbital which permits different symbiont. states of oxidation, e.g., Fe2+ and Fe3+. These metals often serve essential roles in protein structural stabilization or as enzymes METAL EFFLUX SYSTEMS cofactors (Barondeau and Getzoff, 2004). However, the unique The concentrations of metals can vary dramatically in the chemistry of these metals can also provoke inappropriate redox host organism during the course of a bacterial infection, and − reactions with O2 and H2O2, (Fenton’s reaction), generating pathogens have developed a large panel of exporters to regu- highly damaging hydroxyl radicals (OH and OH−) that can ulti- late their intracellular metal concentrations. Currently five main mately lead to the cell death (Stadtman, 1990). It is perhaps this classes of bacterial exporters (Figure 1) have been described: duality that has driven the selection of sophisticated bacterial strategies to orchestrate transition metal homeostasis by sensing, 1. The Resistance-Nodulation-Cell division (RND) type trans- acquiring, storing, or when necessary, exporting these essential porters are integral membrane proteins mediating the efflux but potentially lethal metals. of a broad variety of substrates with a subset exporting metals. The stringent and complex requirements of bacterial This subgroup is named heavy-metal efflux RND (HME- pathogens for metals have been exploited by the immune system RND). This tripartite transporter utilizes the proton motive to limit bacterial growth. The majority of described examples force to drive the efflux of the substrates (Nies, 1995; Goldberg demonstrate that the immune system uses starvation strategies et al., 1999). The RND pump (annotated A in Figure 1)is + + that consist in decreasing metal availability (mainly Fe2 ,Zn2 , an integral membrane protein with a hydrophilic periplas- + and Mn2 )(Canonne-Hergaux et al., 1999; Corbin et al., 2008) mic component, connected to a trimeric outer membrane to restrict bacterial growth. However, recent reports suggest factor (C in Figure 1). This outer membrane channel allows the existence of an immune strategy whereby the bacteria are the efflux of metal into the extracellular space (Paulsen et al., + poisoned with an overload of metal, principally Zn2 and 1997). The third part of the RND transporter complex is com- +/ + Cu 2 (White et al., 2009). This latter finding also corrob- posed of several units of a periplasmic membrane protein (B in orates the fact that deletion of bacterial efflux pumps often Figure 1). It serves as an adaptor that forms a ring around the impairs the virulence of pathogens (Stahler et al., 2006; Rosch outer membrane proteins and the pump, thereby stabilizing et al., 2009; Botella et al., 2011; Li et al., 2011; Veyrier et al., contact between the two other components (Murakami et al., 2011; Padilla-Benavides et al., 2013). It is therefore important 2002; Akama et al., 2004a,b). Frontiers in Cellular and Infection Microbiology www.frontiersin.org December 2013 | Volume 3 | Article 102 | 1 Guilhen et al. Metallo-exporters as virulence factors FIGURE 1 | The different families of metal exporters. The different families (Transporter Mediating Manganese Export) family, and the CorA family of metal exporters include the Resistance-Nodulation-Cell division (RND) type (Cobalt Resistance protein A). As schematized by a question-mark, the transporters, the P-type ATPase family (forming a covalent phosphorylated subsequent export from the periplasm to the extracellular space can be intermediate), the Cation Diffusion Facilitator (CDF) family, the MntX mediated via an unknown porin or passively. Several RND exporter systems have been identified to date, transport various metals in both prokaryotes and eukaryotes including CzcABC from Cupriavidus metallidurans which (Haney et al., 2005). The first description of a CDF protein mediates the efflux of Co2+,Zn2+,andCd2+ with different was YiiP from E. coli and its function, the efflux of Cd2+ and affinities. The deletion of czcC (the outer membrane com- Zn2+,iscoupledtoH+ antiport. In addition, Fe2+ was also ponent) resulted in a decrease of Cd2+ and Co2+ efflux suggested to be exported through YiiP (Grass et al., 2005) whereas the lack of czcA or czcB, the pump and fusion pro- but subsequent studies have shown that Fe2+ transport is not tein, respectively, induced a complete loss of efflux activity as efficient as for Cd2+ and Zn2+ (Wei and Fu, 2005; Hoch (Nies and Silver, 1989; Nies et al., 1989; Goldberg et al., et al., 2012). YiiP and other members of the family are usu- 1999). Other characterized RND systems include CnrABC ally composed of six transmembrane domains followed by from Alcaligenes eutrophus which mediates the efflux of Co2+ a metallochaperone-like cytoplasmic domain that regulates and Ni2+ (Liesegang et al., 1993), CznABC from Helicobacter metal transport activity (Lu et al., 2009). Crystal structures pylori which mediates resistance against high concentrations revealed an inward-facing homodimeric structure with four of Ni2+,Zn2+,andCd2+ (Stahler et al., 2006)andCusABC Zn2+ binding sites per monomer, designated Z1–Z4 (Lu and from E. coli which mediates the efflux of Cu+ and Ag+ (Long Fu, 2007; Coudray et al., 2013). Several homologs with speci- et al., 2012). ficity for Zn2+ have been described, including ZitB in E. coli 2. Members of the P-type ATPase family (Figure 1) are present (Chao and Fu, 2004), ZitA in M. tuberculosis (Nies, 2003), in eukaryotes and prokaryotes and, as the name implies, CzcD in B. subtilis (Guffanti et al., 2002)orS. pneumoniae they couple metal transport to the hydrolysis of ATP (Fagan (Kloosterman et al., 2007). and Saier, 1994). Catalytic phosphorylation of the trans- A subclass of CDF exporters,
Recommended publications
  • Vaccine Antigens Expressed During Natural Mucosal Infection
    Article Integrated Bioinformatic Analyses and Immune Characterization of New Neisseria gonorrhoeae Vaccine Antigens Expressed during Natural Mucosal Infection Tianmou Zhu 1, Ryan McClure 2, Odile B. Harrison 3 , Caroline Genco 1 and Paola Massari 1,* 1 Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; [email protected] (T.Z.); [email protected] (C.G.) 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; [email protected] 3 Department of Zoology, University of Oxford, Oxford OX1 3SY, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-617-636-0431 Received: 20 September 2019; Accepted: 14 October 2019; Published: 17 October 2019 Abstract: There is an increasingly severe trend of antibiotic-resistant Neisseria gonorrhoeae strains worldwide and new therapeutic strategies are needed against this sexually-transmitted pathogen. Despite the urgency, progress towards a gonococcal vaccine has been slowed by a scarcity of suitable antigens, lack of correlates of protection in humans and limited animal models of infection. N. gonorrhoeae gene expression levels in the natural human host does not reflect expression in vitro, further complicating in vitro-basedvaccine analysis platforms. We designed a novel candidate antigen selection strategy (CASS), based on a reverse vaccinology-like approach coupled with bioinformatics. We utilized the CASS to mine gonococcal proteins expressed during human mucosal infection, reported in our previous studies, and focused on a large pool of hypothetical proteins as an untapped source of potential new antigens. Via two discovery and analysis phases (DAP), we identified 36 targets predicted to be immunogenic, membrane-associated proteins conserved in N.
    [Show full text]
  • Isolation of Neisseria Sicca from Genital Tract
    Al-Dorri (2020): Isolation of N sicca from genital tract Dec, 2020 Vol. 23 Issue 24 Isolation of Neisseria sicca from genital tract Alaa Zanzal Ra'ad Al-Dorri1* 1. Department of Medical Microbiology, Tikrit University/ College of Medicine (TUCOM), Iraq. *Corresponding author:[email protected] (Al-Dorri) Abstract In the last few decades some researchers has focused on N. meningitidis and N. gonorrhoeae in attempts to understand the pathogenesis of the diseases produced by these organisms. Although little attention has been paid to the other neisseria species since they are considered harmless organisms of little clinical importance although they can cause infections. In this paper, pathological features and the clinical of high vaginal and cervical infections caused by Neisseria sicca are described, which are normal inhabitants of the human respiratory tract as in oropharynx and can act as opportunistic pathogens when present in other sites such as female genital tract. We note they usually infect married women at a young age group who were multipara and active sexual women. N.sicca was resistant to most antibiotics that were used while the doxycycline was the most effective antibiotic against N.sicca. Keywords: Neisseria sicca,genital tract infection, pharyngeal carriage, colonization, antimicrobial resistance How to cite this article: Al-Dorri AZR (2020): Isolation of Neisseria sicca from genital tract, Ann Trop Med & Public Health; 23(S24): SP232417. DOI:http://doi.org/10.36295/ASRO.2020.232417 Introduction: Neisseria is considered as a genus of b-Proteobacteria, which are absolute symbionts in human mucosal surfaces. 8 species of Neisseria have been reported and they normally colonize the mucosal surfaces of humans [1, 2].
    [Show full text]
  • Atypical, Yet Not Infrequent, Infections with Neisseria Species
    pathogens Review Atypical, Yet Not Infrequent, Infections with Neisseria Species Maria Victoria Humbert * and Myron Christodoulides Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK; [email protected] * Correspondence: [email protected] Received: 11 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause. Keywords: Neisseria species; Neisseria meningitidis; Neisseria gonorrhoeae; commensal; pathogenesis; host adaptation 1.
    [Show full text]
  • Microevolution of Neisseria Lactamica During Nasopharyngeal Colonisation Induced by Controlled Human Infection
    ARTICLE DOI: 10.1038/s41467-018-07235-5 OPEN Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection Anish Pandey1, David W. Cleary 1,2,3, Jay R. Laver1, Andrew Gorringe4, Alice M. Deasy5,6, Adam P. Dale1,2, Paul D. Morris5,6, Xavier Didelot7,9, Martin C.J. Maiden 8 & Robert C. Read 1,2,3 1234567890():,; Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually- excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial micro- evolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase- variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypo- thetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution. 1 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK. 2 Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton SO166YD, UK. 3 Institute for Life Sciences, University of Southampton, Southampton SO166YD, UK. 4 Public Health England, Porton Down, Salisbury SP40JG, UK.
    [Show full text]
  • Application for Consent to Release a GMO – Organisms Other Than Higher Plants
    Department for Environment, Food and Rural Affairs Application for consent to release a GMO – organisms other than higher plants Part A1: Information required under schedule 2 of the Genetically Modified (Deliberate Release) Regulations 2002 Part I General information 1. The name and address of the applicant and the name, qualifications and experience of the scientist and of every other person who will be responsible for planning and carrying out the release of the organisms and for the supervision, monitoring and safety of the release. Clinical & Experimental Sciences, LC72 (MP814) South Academic Block, Southampton General Hospital, Tremona Road, Southampton, UK. Public Health England, Porton Down, Salisbury SP4 0JG, UK 2. The title of the project. “Experimental challenge of the human nasopharynx with recombinant Neisseria lactamica expressing the meningococcal type V autotransporter protein, Neisseria Adhesin A (NadA)”. 1 Part II Information relating to the organisms Characteristics of the donor, parental and recipient organisms 3. Scientific name and taxonomy. Donor: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria meningitidis Taxonomy ID: 122586 Recipient: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria lactamica Taxonomy ID: 869214 The purpose of the genetic modification is to construct a strain of the exclusively human, nasopharyngeal commensal bacterium, Neisseria lactamica (Nlac) that expresses on its surface the outer membrane protein, Neisseria Adhesin A (NadA). NadA is an adhesin protein found in the close relative of Nlac, Neisseria meningitidis (Nmen), which is the causative agent of meningococcal disease. The genetically modified organism (GMO) will be used to investigate the role of NadA in the colonisation of the nasopharynx and associated immune responses in a controlled human bacterial challenge.
    [Show full text]
  • A Genomic Approach to Bacterial Taxonomy: an Examination and Proposed Reclassification of Species Within the Genus Neisseria
    Microbiology (2012), 158, 1570–1580 DOI 10.1099/mic.0.056077-0 A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria Julia S. Bennett,1 Keith A. Jolley,1 Sarah G. Earle,1 Craig Corton,2 Stephen D. Bentley,2 Julian Parkhill2 and Martin C. J. Maiden1 Correspondence 1Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Julia S. Bennett 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [email protected] In common with other bacterial taxa, members of the genus Neisseria are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus Neisseria have been analysed using whole-genome sequence data. As genetic material belonging to the accessory genome is widely shared among different taxa but not present in all isolates, this analysis indexed nucleotide sequence variation within sets of genes, specifically protein-coding genes that were present and directly comparable in all isolates. Variation in these genes identified seven species groups, which were robust to the choice of genes and phylogenetic clustering methods used. The groupings were largely, but not completely, congruent with current species designations, with some minor changes in nomenclature and the reassignment of a few isolates necessary. In particular, these data showed that isolates classified as Neisseria polysaccharea are polyphyletic and probably include more than one taxonomically distinct organism.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Pathogenic Neisseriae: Surface Modulation, Pathogenesis and Infection Control
    REVIEWS Pathogenic neisseriae: surface modulation, pathogenesis and infection control Mumtaz Virji Abstract | Although renowned as a lethal pathogen, Neisseria meningitidis has adapted to be a commensal of the human nasopharynx. It shares extensive genetic and antigenic similarities with the urogenital pathogen Neisseria gonorrhoeae but displays a distinct lifestyle and niche preference. Together, they pose a considerable challenge for vaccine development as they modulate their surface structures with remarkable speed. Nonetheless, their host-cell attachment and invasion capacity is maintained, a property that could be exploited to combat tissue infiltration. With the primary focus on N. meningitidis, this Review examines the known mechanisms used by these pathogens for niche establishment and the challenges such mechanisms pose for infection control. Neisseria meningitidis (meningococcus) and Neisseria surface variation also poses a substantial problem in gonorrhoeae (gonococcus), the well known agents of developing effective vaccines against several strains of epidemic meningitis and gonorrhoea, respectively, are N. meningitidis and against N. gonorrhoeae. Although related Gram-negative bacteria that specifically infect multicomponent vaccines are being developed, the humans; both pathogens prefer to inhabit distinct available vaccines fall short of combating all virulent human mucosal niches and cause markedly different strains7,8. diseases (FIG. 1). One important difference between the An array of molecules is produced by bacteria pathogens is that almost all clinically important N. men- to enable them to colonize and/or infect the host, ingitidis strains are encapsulated, whereas N. gonorrhoeae including adhesins, which are key factors that are strains lack capsule biosynthetic genes. N. meningitidis required for initial colonization of human mucosal is a frequent asymptomatic colonizer of the human sites.
    [Show full text]
  • The Pathogenic Potential of Commensal Species of Neisseria
    J Clin Pathol: first published as 10.1136/jcp.36.2.213 on 1 February 1983. Downloaded from J Clin Pathol 1983;36:213-223 The pathogenic potential of commensal species of Neisseria AP JOHNSOON From the Division of Communicable Diseases, MRC Clinical Research Centre, Watford Road, Harrow, Middlesex, HAl 3UJ SUMMARY Although Neisseria species other than N gonorrhoeae and N meningitidis normally comprise part of the commensal bacterial flora of the oropharynx, they may occasionally act as opportunistic pathogens. Infections in which these organisms have been implicated include cases of endocarditis, meningitis, septicaemia, otitis, bronchopneumonia and possibly genital tract disease. In this paper, the clinical and pathological features of such infections are described, together with a discusssion of factors that may contribute to their development. In most textbooks of medical microbiology, the catarrhalis, M cinereus, M flavus, i, ii and iii, copyright. genus Neisseria is considered to contain only two M pharyngis siccus, Diplococcus mucosus and pathogenic species, namely, N gonorrhoeae and D crassus. In an early review, Wilson and Smith3 N meningitidis. The other members of the genus are considered the classification of these organisms to be generally regarded as harmless inhabitants of the unsatisfactory and suggested that apart from the oropharynx. There is ample evidence in the liter- meningococcus, all Gram-negative cocci found in the ature, however, that these normally non-pathogenic oropharynx should be classified as a single group species are capable ofproducing infection in a variety called either D pharyngis or N pharyngis. This of anatomical sites including the heart, nervous suggestion was not, however, generally adopted.
    [Show full text]
  • Correction To: Neisseria Lactamica Y92–1009 Complete Genome Sequence Anish K
    Pandey et al. Standards in Genomic Sciences (2018) 13:4 DOI 10.1186/s40793-017-0288-5 CORRECTION Open Access Correction to: Neisseria lactamica Y92–1009 complete genome sequence Anish K. Pandey1*, David W. Cleary1, Jay R. Laver1, Martin C. J. Maiden2, Xavier Didelot3, Andrew Gorringe4 and Robert C. Read1* Correction 3) Table 2: Missing/blank term for MIGS 13 has been After publication of the original article [1] it was identified changed to read “Strain is not publicly available”. that an incorrect version of the manuscript has been 4) 2nd paragraph under heading “Insights from the published. This was caused by a technical error which led genome sequence”: Sentence containing “… to a discrepancy between the editorially-accepted version approximately a third (33.5%) of all open reading of the manuscript, and the published version. frames (ORFs) in this genome…” has been shortened A list of Corrections is included below: to “approximately a third (33.5%) of all ORFs in this genome…” 1) The following abbreviations have been corrected 5) 3rd paragraph under heading “Insights from the throughout the article: genome sequence”: Bracketed abbreviation ‘(DUS)’ Nla changed to N. lactamica has been removed. Nme changed to N. meningitides 6) 3rd paragraph under heading “Insights from the N.go changed to N. gonorrhoeae genome sequence”: Bracketed abbreviation ‘(CREEs)’ Nci changed to N. cinerea has been removed 2) Table 1: ‘Term’ and ‘Evidence code’ columns of the 7) Bracketed link for PHAST ‘(http:// first 7 rows have been updated to the following: phast.wishartlad.com/index.html)’ changed to reference 35. 8) Reference 14 initially missing from article, has now been added and correctly referenced 9) Reference 33 was removed, as it was a duplicate of reference 30.
    [Show full text]
  • ID 6 | Issue No: 3 | Issue Date: 26.06.15 | Page: 1 of 29 © Crown Copyright 2015 Identification of Neisseria Species
    UK Standards for Microbiology Investigations Identification of Neisseria species Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 6 | Issue no: 3 | Issue date: 26.06.15 | Page: 1 of 29 © Crown copyright 2015 Identification of Neisseria species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories PHE Publications gateway number: 2015013 UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 6 | Issue no: 3 | Issue date: 26.06.15 | Page: 2 of 29 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Neisseria species Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Characterisation of Genomic Islands in Neisseria Meningitidis
    Characterisation of genomic islands in Neisseria meningitidis Maria Chiara Erminia Catenazzi A Thesis Submitted for the Degree of Doctor of Philosophy (PhD) University of York Department of Biology August 2013 Abstract Neisseria meningitidis asymptomatically colonises the nasopharynx of about 10 % of the human population. This bacterium is an accidental pathogen, with N. meningitidis serogroup B being the main cause of meningitis and septicaemia in developed countries. Strain MC58 has a genome size of 2,272,360 bp and contains 2160 ORFs, more than half of which have already been assigned a function. Nine conserved genomic islands that are absent from the closely related commensal species N. lactamica were identified and comprise 38 genes. Of these, 14 still encode proteins of unknown function. Two of these islands (pathogenic islands 4 and 8) were investigated, and the genes crucial for two further islands (pathogenic islands 3 and 5) involved in polyamine biosynthesis were successfully knocked out in this work. Genomic island 4 contains six genes, which encode proteins that are involved in the 2-methylcitrate pathway; these genes are clustered together to form the prp operon. Several genes belonging to this pathway ( prpC , NMB0432 and ackA-1) were knocked out, and the resulting mutants were unable to utilise propionic acid, which is the substrate for the pathway being investigated. Saliva from over 300 healthy students was analysed for propionic acid content, and the data were compared to the meningococcal carriage status. No significant correlation, however, was found between the concentration of this fatty acid and the carriage status. Genomic island 8 contains coding sequences for the two hypothetical proteins NMB1048 and NMB1049.
    [Show full text]