Flight Instruments 01 1

Total Page:16

File Type:pdf, Size:1020Kb

Flight Instruments 01 1 Aeolus Flight Academy Inc. Flight Instruments 01 1- Which instruments are related to the pitot-static system? a. Airspeed indicator and altimeter. b. Airspeed indicator, altimeter and vertical speed indicator. c. Airspeed indicator, altimeter, vertical speed indicator and heading indicator. d. Airspeed indicator, altimeter, vertical speed indicator, tachometer. 2- Which instruments are related to the static port? a. Airspeed indicator and altimeter. b. Altimeter and vertical speed indicator. c. Airspeed indicator and vertical speed indicator. d. Airspeed indicator, altimeter and vertical speed indicator. 3- The pitot-static system needs to be checked every … a. year. b. 2 years. c. 50 hours of flight. d. 100 hours of flight. 4- Which instruments will be affected if the pitot tube is completely blocked? a. Airspeed indicator, altimeter and vertical speed indicator. b. Altimeter only. c. Airspeed indicator only. d. None of the above. 5- Which instruments will be affected if the static port is completely blocked ? a. Airspeed indicator, altimeter and vertical speed indicator. b. Altimeter only. c. Airspeed indicator only. d. None of the above. 6- If the static port is completely blocked, the vertical speed indicator … a. will show the indicated value at the moment of the blockage. b. will work as usual. c. will show zero. d. will over read in a climb, under read in a descent. 7- If the static port is completely blocked, the altimeter… a. will show the indicated value at the moment of the blockage. b. will work as usual. c. will show zero. d. will over read in a climb, under read in a descent. Page 1 of 5 Aeolus Flight Academy Inc. 8- If the static port is completely blocked, the airspeed indicator … a. will show the indicated value at the moment of the blockage. b. will work as usual. c. will show zero. d. will under read in a climb, over read in a descent. 9- If the static port is completely blocked, the heading indicator …… a. will show the indicated value at the moment of the blockage. b. will work as usual. c. will show zero. d. will over read in a climb, under read in a descent. 10- In the standard pressure region, on the ground, the altimeter needs to be set … a. according to the local atmospheric pressure. b. to 29.92" Hg. c. to the altitude of the aerodrome, as indicated in the CFS. d. to show zero. 11- Airport elevation: 430' Altimeter setting: 29.82" Hg. Find the pressure altitude. a. 330 feet. b. 420 feet. c. 440 feet. d. 530 feet. 12- Airport elevation: 340' Altimeter setting: 30.12" Hg. Find the pressure altitude. a. 140 feet. b. 230 feet. c. 440 feet. d. 540 feet. 13- On the ground at CYHU, your altimeter shows 90'. If pressure increases by 0.01" Hg, your altimeter will show … a. - 190 feet. b. 80 feet. c. 100 feet. d. 190 feet. 14- Indicated altitude: 1000' Altimeter setting: 28.92" Hg Temperature: 30° C Find the density altitude. a. 1235 feet. b. 3000 feet. c. 4235 feet. d. 5470 feet. Page 2 of 5 Aeolus Flight Academy Inc. Questions 15 to 17 are related to the following information: You park your airplane overnight. The aerodrome elevation is 90’ ASL and your altimeter shows 90' like it should. The next morning, the altimeter shows 1220’. 15- What happened to the altimeter ? a. It reacted to the arrival of a low pressure system. b. It reacted to the arrival of a medium pressure system. c. It reacted to the arrival of a high pressure system d. Someone came to changed the altimeter setting. 16- From how much did the pressure change ? a. 11.3" Hg b. 1.13" Hg c. 0.11" Hg d. 0.01" Hg 17- After this change, the aircraft’s performances will be … a. worst. b. as usual. c. better. d. extraordinary. 18- On the airspeed indicator, what does the bottom of the green arc show? a. Maneuvering speed. b. The beginning of the precautionary speed arc. c. Stalling speed with flaps out. d. Stalling speed with flaps in. 19- Which of the following statements is FALSE with respect to true airspeed (TAS) ? a. The true airspeed is the real speed of the airplane in the air mass. b. The true airspeed is the calibrated airspeed corrected for air density and temperature. c. The true airspeed decreases with altitude. d. At altitude, the indicated airspeed and the true airspeed are different. 20- After a climb or a descent, when the airplane goes back to level flight, the needle of the vertical speed indicator shows zero because of… a. the calibrated leak, which ends up equalizing the pressure between the capsule and the case. b. a delay in displaying the rate of climb or rate of descent. c. the contraction of the aneroid capsule. d. the dilation of the aneroid capsule. Page 3 of 5 Aeolus Flight Academy Inc. 21- We consider that the compass is not reliable … a. in a climb. b. in a descent. c. when accelerating, decelerating, including while turning. d. All of the above. 22- When turning from a north heading, the compass will show … a. a turn in the right direction, then will lag. b. a turn in the opposite direction, then will lag. c. a turn in the good direction, then will lead. d. a turn in the opposite direction, then will lead. 23- The angle between the true meridian and the magnetic meridian is called… a. magnetic deviation. b. magnetic variation. c. magnetic incline. d. magnetic angulation. 24- The compass error caused by the aircraft’s magnetic fields is called… a. magnetic deviation. b. magnetic variation. c. magnetic incline. d. magnetic angulation. 25- The compass acceleration error is more pronounced on _____ headings. a. north or south. b. east or west. c. north only. d. south only. 26- We can consider a compass reliable when … a. descending at a constant airspeed. b. climbing at a constant airspeed. c. in straight and level flight. d. All of the above. 27- The calibrated airspeed (CAS) is … a. the indicated airspeed corrected for the air density and temperature. b. the indicated airspeed corrected for the instruments and position errors. c. the true airspeed corrected for the air density and temperature. d. the true airspeed corrected for the instruments and position errors. Page 4 of 5 Aeolus Flight Academy Inc. 28- The true airspeed (TAS) is … a. the indicated airspeed corrected for air density and temperature. b. the indicated airspeed corrected for the instruments and position errors. c. the calibrated airspeed corrected for air density and temperature. d. the calibrated airspeed corrected for the instruments and position errors. 29- What is the definition of Vfe ? a. Maximum speed at which it is allowed to fly with flaps extended. b. Minimum speed at which it is allowed to fly with flaps extended. c. Stalling speed with full flaps down. d. Stalling speed with flaps up. 30- What is the definition of Vso ? a. Maximum speed at which it is allowed to fly with flaps extended. b. Minimum speed at which it is allowed to fly with flaps extended. c. Stalling speed with full flaps down. d. Stalling speed with flaps up. 31- What is the definition of VSi ? a. Maximum speed at which it is allowed to fly with flaps extended. b. Minimum speed at which it is allowed to fly with flaps extended. c. Stalling speed with full flaps down. d. Stalling speed with flaps up. 32- On the airspeed indicator, the normal operating speed range with flaps up goes from _____ to _____. a. Vsi the beginning of Vno b. Vsi Vne. c. Vsi the end of Vno. d. Vso the beginning of Vno. 33- If we sort these speed symbols in ascending order, we get ... a. Vso, Vsi, Vx, Vy, Vfe, Vne, Vno. b. Vso, Vsi, Vx, Vy, Vfe, Vno, Vne. c. Vsi, Vso, Vx, Vy, Vfe, Vne, Vno. d. Vso, Vsi, Vy, Vx, Vfe, Vno, Vne. Name: _______________________________________ Date:_____________________ Mark: /33 Page 5 of 5 .
Recommended publications
  • Airspeed Indicator Calibration
    TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between
    [Show full text]
  • FAHRZEUGTECHNIK Studiengang Flugzeugbau
    fachhochschule hamburg FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau Berliner Tor 5 D - 20099 Hamburg in Zusammenarbeit mit: University of Limerick Department of Mechanical & Aeronautical Engineering Limerick, Ireland Diplomarbeit - Flugzeugbau - Development of an aircraft performance model for the prediction of trip fuel and trip time for a generic twin engine jet transport aircraft Verfasser: Gerold Straubinger Abgabedatum: 15.03.00 Betreuer: Trevor Young, Lecturer 1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME 2. Prüfer: Prof. Dr.-Ing. Hans-Jürgen Flüh Fahrzeugtechnik Abstract This report gives an overview of methods for aircraft performance calculations. After explain- ing the necessary background and the International Standard Atmosphere, it deals with a com- plete mission of a generic twin engine jet transport aircraft, including the required reserves of a diversion. Every part of the mission is considered. This includes climb, cruise, descent and hold. Equations for determining significant parameters of all parts are derived and differences between idealized calculations (based on mathematical performance models) and real ones (based on aircraft flight test data) are explained. A computer program has been written as a macro in Lotus 1-2-3, with data obtained during flights. In the main report simple flowcharts are given to illustrate the methods used. The pro- gram results show the required fuel and the time for an airliner of a certain weight performing a mission with a certain range. In the appendix all data and the flowcharts
    [Show full text]
  • Air Data Computers
    TECHNOLOGY Air Data Computers BY KIM WIOLLAND PORTER-STRAIT INSTRUMENT CO. INC ir Data Computers have been The Beginning with us for many years now Initially, the main air data sensing A and have become increasingly application that concerned us was for more important, never more so then an altitude hold capability with the now as the RVSM mandate deadline autopilot. This “Altitude Capsule,” a approaches. The conventional aneroid simple aneroid just like an altimeter, pressure altimeter has been around is interfaced to a locking solenoid that for decades and is surprisingly accu- allows an error signal to be gener- Rockwell rate for a mechanical instrument. This Collinsʼ ated as the diaphragm changes with ADC-3000 instrument however will slowly lose altitude. All these capsules used gears, accuracy with increasing altitude. This cams, potentiometers and solenoids to eliminated these mechanical concerns. scale error is why they will not meet maintain a given altitude when com- Solid state pressure sensors and digital todayʼs stringent RVSM accuracy manded. In those days if the aircraft instruments are much more forgiving. requirements. The history of RVSM held within +/-100 feet, that was con- Current generation air data computers goes back further then you think, it sidered nominal, but then the accuracy have evolved into a separate sensor/ was first proposed in the mid–1950s would also vary at different altitudes. amplifier that provides a multitude of and again in 1973, and both times was These mechanically sensing instru- functions and information. rejected. With RVSM going into effect ments have at times been problems for The first generation of a Central Air this month, it will provide six new us all, failing to maintain proper pres- Data Computer (CADC) evolved out flight levels, increase airspace capac- sure rates on them during normal rou- of the Navy F14A Tomcat program in ity and most likely save hundreds of tine maintenance would cause undo the 1967-1969 time period.
    [Show full text]
  • Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2004 Use of the GPS Reciprocal Heading Method for Determining Pitot- Static Position Error in Helicopter Flight Testing Rucie James Moore University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Management and Operations Commons Recommended Citation Moore, Rucie James, "Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/4692 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Rucie James Moore entitled "Use of the GPS Reciprocal Heading Method for Determining Pitot-Static Position Error in Helicopter Flight Testing." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Rodney C. Allison, Major Professor We have read this thesis and recommend its acceptance: Peter Solies, Ralph Kimberlin Accepted for the
    [Show full text]
  • Aerospace Micro-Lesson Aiaa
    AIAA AEROSPACE MICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee AIR SPEED One of the most important pieces of knowledge for any pilot is the speed of an aircraft. There are two ways to measure the speed of an airplane: airspeed and ground speed. Airspeed is the speed of the airplane with respect to the air through which it is flying; ground speed is its speed relative to the ground over which it is flying. Airspeed is important when calculating lift and drag; ground speed is important when calculating flight times between different places. Calculating speeds is a major part of designing and flying aircraft. G RADES K-2 Flying a paper airplane on a windy day shows the difference between airspeed and ground speed very well. Fly the paper airplane indoors—in the classroom or down the hall, if you have permission—and note how far it goes and in what direction. Then go outside to a place where the wind is blowing and fly the paper airplane again. There does not need to be much wind at all. For the clearest illustration of the difference, launch the paper airplane at right angles to the wind, so that it flies through a crosswind and gets blown sideways. The airspeed is the same as it was when it flew indoors, but the ground speed now has a serious sideways component. You can also launch it into the wind and downwind, showing that even though the airspeed is the same, the wind always adds a component to the ground speed in the direction in which it is blowing.
    [Show full text]
  • Glider Handbook, Chapter 4: Flight Instruments
    Chapter 4 Flight Instruments Introduction Flight instruments in the glider cockpit provide information regarding the glider’s direction, altitude, airspeed, and performance. The categories include pitot-static, magnetic, gyroscopic, electrical, electronic, and self-contained. This categorization includes instruments that are sensitive to gravity (G-loading) and centrifugal forces. Instruments can be a basic set used typically in training aircraft or a more advanced set used in the high performance sailplane for cross- country and competition flying. To obtain basic introductory information about common aircraft instruments, please refer to the Pilot’s Handbook of Aeronautical Knowledge (FAA-H-8083-25). Instruments displaying airspeed, altitude, and vertical speed are part of the pitot-static system. Heading instruments display magnetic direction by sensing the earth’s magnetic field. Performance instruments, using gyroscopic principles, display the aircraft attitude, heading, and rates of turn. Unique to the glider cockpit is the variometer, which is part of the pitot-static system. Electronic instruments using computer and global positioning system (GPS) technology provide pilots with moving map displays, electronic airspeed and altitude, air mass conditions, and other functions relative to flight management. Examples of self-contained instruments and indicators that are useful to the pilot include the yaw string, inclinometer, and outside air temperature gauge (OAT). 4-1 Pitot-Static Instruments entering. Increasing the airspeed of the glider causes the force exerted by the oncoming air to rise. More air is able to There are two major divisions in the pitot-static system: push its way into the diaphragm and the pressure within the 1. Impact air pressure due to forward motion (flight) diaphragm increases.
    [Show full text]
  • Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su
    Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su B.S. Aerospace Engineering, Iowa State University, 1996 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirement for the Degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology February, 1999 ©1999 Massachusetts Institute of Technology. All rights reserved. Author........... .................... ,. ....... .. ... ............................................................................ Department of Aeronautics and Astronautics January 14, 1999 Certifie d b y .............................. ............... .............. ..................... V. ... ... ..o..... ... ..C r Certe b( (Professor John-Paul Clarke Department of Aeronautics and Astronautics Thesis Supervisor Accepted by .................................................................... ..... ........ ........ .. .... ...... Professor Jaime Peraire Chairman, epartment Graduate Committee MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 1 7 1999 -oWWW LIBRARIES Evaluation of Aircraft Performance Algorithms in Federal Aviation Administration's Integrated Noise Model by Wei-Nian Su Submitted to the Department of Aeronautics and Astronautics Engineering on January 14, 1999 in partial fulfillment of the requirement for the Degree of Master of Science in Aeronautics and Astronautics Engineering Abstract The Integrated Noise Model (INM) has been the Federal Aviation Administration's
    [Show full text]
  • Development of Air Data Computation Function of a Combined Air Data and Aoa Computer
    DEVELOPMENTOFAIRDATACOMPUTATIONFUNCTIONOFACOMBINEDAIR DATAANDAOACOMPUTER ATHESISSUBMITTEDTO THEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCESOFÇANKAYA UNIVERSITY BY RAFETIL)IN INPARTIALFULLFILLMENTOFTHEREQUIREMENTS FOR THEDEGREEOFMASTEROFSCIENCE IN ELECTRONICSANDCOMMUNICATIONSENGINEERING SEPTEMBER,2011 ACKNOWLEDGEMENTS The author wishes to express his deepest gratitude to his supervisor Prof. Dr. Celal Ăŝŵ7> for his guidance, advice, criticism, encouragements and insight throughout the research. The author would also like to thank Mehmet Mustafa KARABULUT for his suggestions and comments iv ABSTRACT DEVELOPMENT OF AIR DATA COMPUTATION FUNCTION OF A COMBINED AIR DATA AND AOA COMPUTER />)/E, Rafet M.Sc., Department of Electronics and Communication Engineering ^ƵƉĞƌǀŝƐŽƌ͗WƌŽĨ͘ƌ͘ĞůĂůĂŝŵ7> September 2011, 51 Pages In this thesis, Air Data Computer part of a Combined Air Data System (CADS) and the simulator environment to test the developed CADS are developed on standard personal computers. Normally, a CADS system on an aircraft is composed of two separate equipments, the Air Data Computer (ADC) and the Angle of Attack (AOA) system. Therefore the developed CADS system combines both functionalities in an integral manner on a card. This approach not only reduces the volume but the total cost of the CADS system as well. Keywords: Avionic, System Integration, Flight Simulation, Software, Air Data Calculation, Sensor Simulation v Y dmD>b7<,ssZ7s,mhD/^/7>'7^zZ/ ,ssZ7 &KE<^7zKE>Z/HESAPLAMALARI '>7bd7ZDE>Z7 />)/E, Rafet zƺŬƐĞŬ>ŝƐĂŶƐ͕ůĞŬƚƌŽŶŝŬǀĞ,ĂďĞƌůĞƔŵĞDƺŚĞŶĚŝƐůŝŒŝŶĂďŝůŝŵĂůŦ
    [Show full text]
  • Technical Reference Publication S083A(NC)
    Technical Reference Publication S083A(NC) Document provided courtesy of SpaceAge Control, Inc. An ISO 9001/AS9000-Compliant Company 38850 20th Street East • Palmdale, CA 93550 USA +1-661-273-3000 [email protected] http://spaceagecontrol.com/ Engine Sensors Environmental Control System (ECS) Sensors Non-Aerospace Air Data Products Multi-Axis Displacement Sensors Position Transducers CHAPTER 2 PITOT STATIC SYSTEM PERFORMANCE PAGE 2.1 INTRODUCTION 2.1 2.2 PURPOSE OF TEST 2.1 2.3 THEORY 2.2 2.3.1 THE ATMOSPHERE 2.2 2.3.2 DIVISIONS OF THE ATMOSPHERE 2.2 2.3.3 STANDARD ATMOSPHERE 2.3 2.3.3.1 STANDARD ATMOSPHERE EQUATIONS 2.5 2.3.3.2 ALTITUDE MEASUREMENT 2.7 2.3.3.3 PRESSURE VARIATION WITH ALTITUDE 2.7 2.3.4 ALTIMETER SYSTEMS 2.9 2.3.5 AIRSPEED SYSTEMS 2.10 2.3.5.1 INCOMPRESSIBLE AIRSPEED 2.10 2.3.5.2 COMPRESSIBLE TRUE AIRSPEED 2.12 2.3.5.3 CALIBRATED AIRSPEED 2.13 2.3.5.4 EQUIVALENT AIRSPEED 2.16 2.3.6 MACHMETERS 2.17 2.3.7 ERRORS AND CALIBRATION 2.20 2.3.7.1 INSTRUMENT ERROR 2.20 2.3.7.2 PRESSURE LAG ERROR 2.22 2.3.7.2.1 LAG CONSTANT TEST 2.23 2.3.7.2.2 SYSTEM BALANCING 2.24 2.3.7.3 POSITION ERROR 2.25 2.3.7.3.1 TOTAL PRESSURE ERROR 2.25 2.3.7.3.2 STATIC PRESSURE ERROR 2.26 2.3.7.3.3 DEFINITION OF POSITION ERROR 2.27 2.3.7.3.4 STATIC PRESSURE ERROR COEFFICIENT 2.28 2.3.8 PITOT TUBE DESIGN 2.32 2.3.9 FREE AIR TEMPERATURE MEASUREMENT 2.32 2.3.9.1 TEMPERATURE RECOVERY FACTOR 2.34 2.4 TEST METHODS AND TECHNIQUES 2.35 2.4.1 MEASURED COURSE 2.36 2.4.1.1 DATA REQUIRED 2.38 2.4.1.2 TEST CRITERIA 2.38 2.4.1.3 DATA REQUIREMENTS 2.39 2.4.1.4 SAFETY CONSIDERATIONS 2.39 2.4.2 TRAILING SOURCE 2.39 2.4.2.1 TRAILING BOMB 2.40 2.4.2.2 TRAILING CONE 2.40 2.4.2.3 DATA REQUIRED 2.41 2.4.2.4 TEST CRITERIA 2.41 2.4.2.5 DATA REQUIREMENTS 2.41 2.4.2.6 SAFETY CONSIDERATIONS 2.41 2.i Document provided by SpaceAge Control, Inc.
    [Show full text]
  • Comparison Study and Sensitivity Analysis of Flight Test Techniques for Air Data Position Error Correction in Small Aircraft
    Trans. Japan Soc. Aero. Space Sci. Vol. 53, No. 182, pp. 250–257, 2011 Comparison Study and Sensitivity Analysis of Flight Test Techniques for Air Data Position Error Correction in Small Aircraft By Sang-Jong LEE,1Þ Jae Won CHANG,1Þ Jeong Ho PARK,2Þ Byoung Soo KIM3Þ and Kie Jeong SEONG1Þ 1ÞFlight Control Team, Korea Aerospace Research Institute, Daejeon, Republic of Korea 2ÞPGM R&D Lab, LIG Nex1 Co. Ltd., Yongin, Republic of Korea 3ÞSchool of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Republic of Korea (Received May 18th, 2009) The flight test is important in the development and certification phases of an aircraft. It is composed of various tests, but the position error correction test should be performed first to determine error of the pitot-static measurement system that is the basis for evaluating flight characteristics. This paper investigates and compares recent test methods using real flight test results. The ground course and arbitrary heading method are both considered using GPS and DGPS to measure ground speed. The arbitrary heading method was most efficient and precise. In addition, new method is proposed and successfully used to determine accurate position error by comparison with DGPS results. Finally, sensitivity analysis was performed to analyze the effect of error sources. It shows that the most important error is the measured indicated airspeed following by measured true airspeed, outside air temperature, and pressure altitude. Key Words: Flight Testing, Aircraft, Airworthiness, Position Error Correction, Analysis Nomenclature CAM: measured by camcorder DGPS: measured by DGPS aSL: speed of sound at sea level GPS: measured by GPS HI: indicated pressure altitude s: standard day condition HIC: indicated pressure altitude corrected for instrument W: wind error x: vector component of x-axis ÁHPC: altimeter position error y: vector component of y-axis Pa: ambient pressure PSL: pressure at sea level 1.
    [Show full text]
  • National Advisory Committee for Aeronautics
    . .—- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS , TECHNICAL NOTE No. 1120 , STANDARD NOMENCLATURE FOR AIRSPEEDS WITH TABLES AND CHARTS FOR USE IN CALCULATION OF AIRSPEED . By William S. Aiken, Jr. Langley hCemoriaI Aeronautical Laboratory Langley Field, Va. Washington September 1946 ,. * -.. * NA!215EAL ADVW3RY COMMITTEE FOR AERONAUTICS . .● ✌. TECHNICAL NOTE No, 1120 . .- . AND CEM?TS FOR USE IN CALCULATION W AIRSPEED -. By William S . Mbn, Jr. Symbols and definitions of various airspeed terms that have been adopted as st~dard by the NACA SubcGEP mittee on Aircraft structural Design are presented. The ● equations, charts, and tablgs required In the evaluation of true sirspeed, calibrated airspeeds equivalent air~ s-peed,im-p.actand dynamic nressures, and }:achand Reynolds nlmnbers have been cor,piled~ Tables of the standard . akmosghera to an alt?tude of 65,.200feet and a tentative extension to an altitude of 1009000 feet are given along .“ with tha basic equations and ccfistants on whi~h both the standard atmosphere and the tentative extension are based~ INTI?ODUCTION In s.nalyses of aerodynamic data very often wind- tunnel or fligb.t measurements must bs converted into air- speed and related quar.ttties that are used in engineering calculatt ons, Attsmpts to accomplish such confers!.on by use of available m.etkods have been corc~licated by the diversity of s~mbols and definitions and by the necessity of referring to equations, charts, and tables from a nwn”oer of different sources. A standard set of symbols and definitions of v.micms atrsgaad terms that were adopted by the KACA Subcommittee on Aircraft Structural Design and a cow~ilation of th~ necessary equations, charts, ‘ and tables f~r converting measured pressures and temper- atures into airs~eeds, determining Mach numbars sand Re~~~ds zi’~ber~, snd determtnir.g otker quantities such as dynamic and iwqp.ct pressures that are of interest are therefore presented Mrein.
    [Show full text]
  • Velocities of an Aircraft: Airspeed and Groundspeed
    Velocities of an aircraft : Airspeed and Groundspeed Pitot- static system and instruments 2 Measuring air speed •The air speed of an aircraft is the speed at which it progresses through the air mass in which it is flying. The simplest method of measuring air speed is to measure the pressure of air which is exerted against the nose of the aircraft by the air mass ahead of it. This principle is used in practice and the device used to measure the pressure is called the Pitot Tube and the pressure of the air that it samples is Pitot Pressure . The pressure so given is directly proportional to the air speed. The amount of pressure will not only be a function of air speed but it will also be a function of altitude and air temperature. Air normally becomes less dense with an increase in height so that a direct measurement of this nature can be misleading. Never the less it can be used, and provided account is taken of the density of the surrounding air, readings taken in this fashion can be converted to give the true air speed. 3 Pitot tube •Pitot pressure is composed of two elements : •a. Static Pressure: The natural pressure that is exerted by the atmosphere. •b .Dynamic Pressure : The pressure generated by the aircraft's movement. Pitot Pressure = Static Pressure + Dynamic Pressure or Dynamic Pressure = Pitot Pressure - Static Pressure 4 Airspeed Indicator A simple mechanical device attempting to “solve” a very complex equation 5 Airspeed indicator 6 Airspeed Indicator (ASI) • The ASI is a sensitive, differential pressure gauge which measures and promptly indicates the difference between Pitot (impact/dynamic pressure) and static pressure.
    [Show full text]