Freie Universität Berlin, Institut Für Chemie Und Biochemie
Total Page:16
File Type:pdf, Size:1020Kb
Freie Universität Berlin, Institut für Chemie und Biochemie Coordination Chemistry Andrey Petrov (AG Müller, F208) 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. a) For acetylacetonate as the ligand draw the two enantiomers of a complex M(acac)3. 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. a) For acetylacetonate as the ligand draw the two enantiomers of a complex M(acac)3. 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] No plane symmetry chiral 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] No plane symmetry chiral 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- has a plane symmetry [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] has a plane symmetry + cis-[RuCl(py)(phen)2] 1) Octahedral transition metal complexes can be chiral, although the corresponding ligands are achiral. b) Which of the following octahedral complexes are chiral: + cis-[CoCl2(en)2] 3- [Cr(ox)3] 2+ trans-[PtCl2(en)2] 2+ [Ni(phen)3] - [RuBr4(phen)] + cis-[RuCl(py)(phen)2] no plane symmetry 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] 2- (b) [Mn(CN)6] 2+ (c) [Cr(en)3] 3- (d) [Fe(ox)3] 2- (e) [Pd(CN)4] 2- (f) [CoCl4] 2- (g) [NiBr4] 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) 3- (d) [Fe(ox)3] (5) 2- (e) [Pd(CN)4] (0) 2- (f) [CoCl4] (3) 2- (g) [NiBr4] (2). Octahedral complex, CN- is a strong field ligand 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) 3- (d) [Fe(ox)3] (5) 2- (e) [Pd(CN)4] (0) 2- (f) [CoCl4] (3) 2- (g) [NiBr4] (2). Octahedral complex, CN- is a strong field ligand 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) 3- (d) [Fe(ox)3] (5) 2- (e) [Pd(CN)4] (0) 2- (f) [CoCl4] (3) 2- (g) [NiBr4] (2). Octahedral complex, en not so strong, low charge on Cr, 1st row TM 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) (d) [Fe(ox)3]3- (5) 2- (e) [Pd(CN)4] (0) 2- (f) [CoCl4] (3) 2- (g) [NiBr4] (2). Octahedral complex, oxalate is weak, 1st row TM 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) (d) [Fe(ox)3]3- (5) (e) [Pd(CN)4]2- (0) 2- (f) [CoCl4] (3) 2- (g) [NiBr4] (2). Square planar complex 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) (d) [Fe(ox)3]3- (5) (e) [Pd(CN)4]2- (0) (f) [CoCl4]2- (3) 2- (g) [NiBr4] (2). Tetrahedral complex 2) In each of the following complexes, rationalize the number of observed unpaired electrons (stated after the formula): 4- (a) [Mn(CN)6] (1) 2- (b) [Mn(CN)6] (3) 2+ (c) [Cr(en)3] (4) (d) [Fe(ox)3]3- (5) (e) [Pd(CN)4]2- (0) 2- (f) [CoCl4] (3) (g) [NiBr4]2- (2). Tetrahedral complex 3) Discuss the factors that contribute to the preference for forming either a high- or a low-spin d4 complex. How would you distinguish experimentally between the two configurations? 3) Discuss the factors that contribute to the preference for forming either a high- or a low-spin d4 complex. How would you distinguish experimentally between the two configurations? e eg g t2g t2g In general: if the energy required to pair two electrons is greater than the energy cost of placing an electron in an eg, Δ, high spin splitting occurs. P> Δ or P< Δ • Period where the metal is • Charge on the metal (Fe2+ and Co3+) • Ligand field Distinguish experimentally: with a magnetic susceptibility balance, EPR 4) What is the expected ordering of values of Doct for 2+ [Fe(H2O)6] 3- [Fe(CN)6] 4- [Fe(CN)6] ? 4) What is the expected ordering of values of Doct for 2+ rd [Fe(H2O)6] 3 3- [Fe(CN)6] 4- [Fe(CN)6] ? 4) What is the expected ordering of values of Doct for 2+ rd [Fe(H2O)6] 3 3- st [Fe(CN)6] 1 4- nd [Fe(CN)6] ? 2 Higher oxidation state leads to higher Δ 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2- (b) [FeCl4] (c) [CoCl3(py)3] 2+ (d) [Ni(en)3] 3+ (e) [Ti(H2O)6] 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] (c) [CoCl3(py)3] 2+ (d) [Ni(en)3] 3+ (e) [Ti(H2O)6] 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 2+ (d) [Ni(en)3] 3+ (e) [Ti(H2O)6] 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 3+, d6 2+ (d) [Ni(en)3] 3+ (e) [Ti(H2O)6] 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 3+, d6 2+ (d) [Ni(en)3] 2+, d8 3+ (e) [Ti(H2O)6] 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 3+, d6 2+ (d) [Ni(en)3] 2+, d8 3+ (e) [Ti(H2O)6] 3+, d1 3- (f) [VCl6] (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 3+, d6 2+ (d) [Ni(en)3] 2+, d8 3+ (e) [Ti(H2O)6] 3+, d1 3- (f) [VCl6] 3+, d2 (g) [Cr(acac)3] 5) For each of the following complexes, give the oxidation state of the metal and its dn configuration: 4- (a) [Mn(CN)6] 2+, d5 2- (b) [FeCl4] 2+, d6 (c) [CoCl3(py)3] 3+, d6 2+ (d) [Ni(en)3] 2+, d8 3+ (e) [Ti(H2O)6] 3+, d1 3- (f) [VCl6] 3+, d2 (g) [Cr(acac)3] 3+, d3 6) Fill in the gaps Ligand Structure (Metal = M) e-count of the ligand h4-cyclobutadiene h5-cyclopentadienyl h6-arene Hydride Carbonyl Alkyl Alkene Cyanide 6) Fill in the gaps: η4-cyclobutadiene: 4 electron donor . - η5-cyclopentadienyl: 6 electron donor, anionic 6) Fill in the gaps: η6-arene: 6 electron donor carbonyl: 2 electron donor :C≡O cyanide: 2 electron donor, anionic -C≡N 6) Fill in the gaps: hydride: 2 electron donor, anionic H- alkyl: 2 electron donor, anionic R- alkene: 2 electron donor 7) Count the number of valence electrons at each metal center.