Miniature Attachment Systems: Exploring Biological Design Principles

Total Page:16

File Type:pdf, Size:1020Kb

Miniature Attachment Systems: Exploring Biological Design Principles © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Design and Nature, CA Brebbia, L Sucharov & P Pascola (Editors). ISBN 1-85312-901-1 Miniature attachment systems: exploring biological design principles S.N. Gorb Biological Microtribology Group, Division 14 MPI of Developmental Biolop, Tuebingen, Germany. Abstract One of the greatest challenges for engineering science today is miniaturisation. Insects and other arthropods have solved many problems correlated with small size during their evolution. A variety of biomechanical systems of insects, adapted for attachment of parts of the body to each other or attaching the organism to a substrate, are the main topic of the present paper, There are eight fimdamental classes of attachment principles: clamp, spacer, sucker, expansion anchor, hooks, lock or snap, adhesive secretions, and friction. Different combinations of these principles occur in the majority of biological attachment structures. Friction-based probabilistic fasteners provide precise reversible coupling of surfaces with a minimum expenditure of force, Patent databases contain a huge number of ideas dealing with applications of existing fasteners. However, most of these applications use the same types of available hook-like tapes. Biological systems provide a variety of microscale surface patterns, which may serve as a source for Mure prototyping of novel types of releasable fasteners and micro-fasteners. An engineering approach is to copy the surface profile using available technologies. As an initial stage of prototyping diverse surface microsculpture, the low-viscosity wax cast technique is applied to produce surface casts, Since forces in the contact areas of most biological systems have not been previously measured, the fust step in this direction is taken toward identification of the interesting properties of systems. This approach combines the knowledge of biologists and the measuring techniques used in material science. There are three main areas, in which Nature’s solutions of attachment problems may be applied: (1) precise mechanics, (2) gluing and joining technology, and (3) material science of surface-active composite materials. © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Design and Nature, CA Brebbia, L Sucharov & P Pascola (Editors). ISBN 1-85312-901-1 124 DesignandNature 1 Why study biological attachment? Throughout evolution, Nature has constantly been called upon to act as an engineer in solving technical problems. Organisms have evolved an immense variety of shapes and structures. Although often intricate and Ii-agile, they can, nonetheless, deal with extreme mechanical loads. Many tlmctional solutions are based on a variety of ingenious structural solutions, Biologists have collected a huge amount of information about the variety of biomechanical systems adapted for attachment of parts of the body to each other, or attaching the organism to a substrate. Understanding these is of great scientific interest, since we can learn about their use as structural elements and their biological role and function, This knowledge is also highly relevant for technical applications. Information on biological prototypes can be utilised to mimic them for industrial applications. There are three main areas where Nature’s solutions of attachment problems may potentially be applied: (1) precise mechanics, (2) gluing technology, and (3) material science of surface-active composite materials. Possible innovations may also appear at the boundaries of the named areas. Also, knowledge about the properties of biological systems might be useful for pest control, by modifying plant surfaces, In the present paper, we give a short overview of the functional design of attachment devices occurring in insects and how Nature’s design may be used as a basis for biomimetics in various technological areas, 2 Biological attachment devices Biological attachment devices are fi.mctional systems, the purpose of which is either temporary or permanent attachment of an organism to the substrate, to another organism, or temporary interconnection of body parts within an organism. Their design varies enormously and is subject to different functional loads [1], Design and functional principle depend on the biology of the concrete species. The evolutionary background and the habits influence the specific composition of attachment systems in each particular species, In insects and other arthropods, cuticle and its derivatives play a crucial role in the design of the devices, among which eight fimdamental classes of attachment principles have been recognised: (1) hooks, (2) lock or snap, (3) clamp, (4) spacer, (5) sucker, (6) expansion anchor, (7) glue, and (8) friction [2]. Some of them, together with a biological example, are illustrated in Figure 1. Additionally, different combinations of these principles occur in existing attachment structures, Most attachment devices are composed of microscopical structures and driven by muscular force, However, many systems have involved surfaces with particular frictional and adhesive properties. Generally, any movement involving contact between two surfaces or between a surface and a medium deals with the resistance of the surfaces or medium, This resistance is called fi-iction, a phenomenon which has a great influence on the design of biomechanical © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Design and Nature, CA Brebbia, L Sucharov & P Pascola (Editors). ISBN 1-85312-901-1 Design and Nature 125 structures. Living creatures posses specialised surfaces enabling the minimisation of contact forces (anti-friction systems) or their maximisation (friction systems) (Fig. 2). It is interesting that in both cases the resulting task of such a system is to save muscular energy, One always needs friction to generate force for overcoming the drag caused by friction in other parts of the system. Optimisation then becomes the exercise of minimizing friction at one end of the systeu while maximizing it at the other [3], For example, in the case of terrestrial locomotion, for effective propulsive movements, a high ffiction is necessary for contact of the limbs with the substratum and a lower friction – within the joints of the limbs. A Figure 1, Attachment rnicrostructures of insect body based on different principles, Left panels show diagrams explaining principles of attachment in structures shown in right panels, A, Hooks of the wing locking mechanism of the sawfly Cimbex femoratus, B, Lock of the head in the damselfly Pyrrhosoma nymphula. C. Friction-active structures of the head- arresting mechanism of the dragonfly Aeshna mixta, D. Microsuckers of the fust legs in the males of the beetle Dytiscus inarginatus. E, Soft pads of the grasshopper Tettigonia viridissima. F. Hairy pads with anisotropic terminal elements on the legs of the beetle Rhagorzycha fulva, Dark-gray is an animal body; light-gray indicates a substrate. Among various cases of contact pairs in biology, anti-friction systems always have a predefine pair of surfaces, whereas, among friction systems, there are some that deal with predefine surfaces, and others, in which one surface remains unpredictable, The first type of friction system occurs, for example, in wing-locking devices and head-arresting systems and is called probabilistic fasteners [4-6], The second type is mainly represented by insect attachment pads © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Design and Nature, CA Brebbia, L Sucharov & P Pascola (Editors). ISBN 1-85312-901-1 126 of two alternative designs: hairy and smooth [7], The relationship between surface patterns and/or mechanical properties of materials of contact pairs results in two main working principles of the frictional devices: mechanical interlocking and maximisation of the contact area (Fig. 2). Since biological surfaces are a part of the physical world, most of the friction and adhesion phenomena in biomechanical systems can be explained by mechanical interlocking andlor area of contact between surfaces, independent of the basic physical forces involved in the particular attachment mechanism, This indicates that the geometry of the surface, load forces at which the system operates, and mechanical properties of material will play essential roles in the design of the actual system [8-10], In addition, chemistry of surfaces, the presence and nature of secretory fluids additionally mediate surface forces. Since friction and adhesion are very complex physical phenomena, the biggest challenge in studying them in biological systems is to collect maximum information about gross morphology, ultrastructure, chemistry, and mechanics of surfaces to explain the functional principles of particular attachment systems (Fig, 3). friction anti-friction systems systems / -’% 4 surfaces are one sulfaca is swfaces are pmt%fined mpredictabie pmdofined J/ --m My wnooth w~ mm, Figure 2. Functional significance and working principles of contacting surfaces in biological objects. Living creatures posses specialised surfaces enabling the minimisation of contact forces (anti-friction systems) or their maximisation (friction systems), Among such systems, there are some
Recommended publications
  • Formica S. Str.) As a Method of Biological Protection in Phytocenoses of the Mordovia Republic
    МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.И. ВАВИЛОВА» ВАВИЛОВСКИЕ ЧТЕНИЯ – 2020 Сборник статей Международной научно-практической конференции, посвященной 100-летию открытия закона гомологических рядов и 133-летию со дня рождения академика Н.И. Вавилова Конференция поддержана Российским фондом фундаментальных исследований в конкурсе на лучшие проекты организации онлайн-конференций, проводимых во втором полугодии 2020 года (Договор № 20-016-22001\20) 24–25 ноября 2020 г. Саратов 2020 1 УДК 378:001.891 ББК 4 В12 В 12 Вавиловские чтения – 2020: Сборник статей Международной научно-практической конференции, посвященной 100-летию открытия закона гомологических рядов и 133-летию со дня рождения академика Н.И. Вавилова. – Саратов: Амирит, 2020. – 315 с. ISBN 978-5-00140-684-6 Редакционная коллегия: д-р техн. наук, профессор Д.А. Соловьев д-р экон. наук, профессор И.Л. Воротников канд. с.-х. наук, доцент О.В. Ткаченко УДК 378:001.891 ББК 4 Материалы изданы в авторской редакции ISBN 978-5-00140-684-6 ©ФГБОУ ВО Саратовский ГАУ, 2020 2 UDC 58.073; 574 RED WOOD ANTS (FORMICA S. STR.) AS A METHOD OF BIOLOGICAL PROTECTION IN PHYTOCENOSES OF THE MORDOVIA REPUBLIC Kozlova Anastasia Alexandrovna1 1 [email protected], 8 (920) 0260451 Nizhny Novgorod Lobachevski State University, 603950 Russia, N. Novgorod, Gagarin avenue, 23 Abstract. This article explains the method of cartographical monitoring of red wood ants (subgenus Formica s. str.) as active forest protectors on the example of specific diversity in Mordovian phytocenoses. Key words: republic of Mordovia, phytocenoses, red wood ants, digital mapping, geographic information systems.
    [Show full text]
  • Weitere Blattwespen (Hymenoptera: Symphyta) Des Zoologischen Institutes Der Universität Rostock, Insbesondere Aus Den Sammlungen Jahn Und Haupt
    Archiv Natur- und Landeskunde Mecklenburg-Vorpommern GEOZON SCIENCE MEDIA Band 54 / 2016 / Seiten 3–11 / DOI 10.3285/nlk.54.01 ISSN 0518-3189 www.natur-und-landeskunde-mv.de Weitere Blattwespen (Hymenoptera: Symphyta) des Zoologischen Institutes der Universität Rostock, insbesondere aus den Sammlungen Jahn und Haupt Hans-Joachim Jacobs Zusammenfassung Blattwespen des Zoologischen Institutes der Universität Rostock, insbesondere die Sammlungen Jahn und Haupt, wurden revidiert. Das Material aus den Familien Argidae, Cephidae, Cimbici- dae, Diprionidae, Orussidae, Pamphiliidae, Siricidae, Tenthredinidae und Xiphydriidae stammt aus zehn deutschen Bundesländern, hauptsächlich aus Brandenburg und Hessen. Für folgende Taxa fehlen Hinweise in den Checklisten für die jeweiligen Bundesländer in der Entomofauna Germanica (Blank et al. 2001): Für Brandenburg Tenthredo arcuata Forster, 1771 und Cimbex connatus (Schrank, 1776), für Hessen Sterictiphora angelicae (Panzer, 1799) und Tenthredopsis tarsata (Fabricius, 1804), für Mecklenburg-Vorpommern Orussus abietinus (Scopoli, 1763), für Sachsen Macrodiprion nemoralis (Enslin, 1917), für Nordrhein-Westfalen Pamphilius betulae Lin- naeus, 1758, für Rheinland-Pfalz Urocerus gigas Linnaeus, 1758. Daneben finden sich Einzelfunde aus Frankreich, Liechtenstein, Polen, Slowakei, Spanien und der Schweiz. Abstract More sawflies (Hymenoptera: Symphyta) in the Zoological Institute of Rostock University especially in the collections of Jahn and Haupt Symphyta stored in the Zoological Institute of the Rostock University has been revised. This ma- terial contains specimens of Argidae, Cephidae, Cimbicidae, Diprionidae, Orussidae, Pamphilii- dae, Siricidae, Tenthredinidae and Xiphydriidae. The specimens have been collected in 10 federal states of Germany, especially in Brandenburg and Hessen. The following taxa are not includ- ed in the checklists of German provinces published in Entomofauna Germanica (Blank et al.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide
    _____________Mun. Ent. Zool. Vol. 6, No. 2, June 2011__________ 779 CHECK-LIST OF THE FAMILY CIMBICIDAE OF TURKEY AND SOME BIOLOGICAL OBSERVATIONS (HYMENOPTERA: SYMPHYTA) Önder Çalmaşur* Atatürk University, Faculty of Agriculture, Department of Plant Protection, 25240, Erzurum, TURKEY. E-mails: [email protected] and [email protected] [Çalmaşur, Ö. 2011. Check-list of the family Cimbicidae of Turkey and some biological observations (Hymenoptera: Symphyta). Munis Entomology & Zoology, 6 (2): 779-784] ABSTRACT: A total of 17 species in six genera of the sawfly family Cimbicidae were found in Turkey. The material was collected in various provinces, mainly in the eastern part of the country, during 1987-2009. The paper gave an updated list of species together with distribution records from own observations and literature. Five species are reported as new to Turkey, namely Cimbex femoratus (Linné, 1758), Corynis crassicornis (Rossi, 1790), Corynis orientalis (Konow, 1898), Corynis similis (Mocsáry, 1880) and Trichiosoma latreillii Leach, 1817. New localities are added for previously known species. KEY WORDS: Cimbicidae, Symphyta, sawfly, fauna, new records, Turkey. The suborder Symphyta includes those Hymenoptera, which are structurally primitive, most families and superfamilies are relatively small taxa containing, world-wide, about 8755 species (Taeger & Blank, 2008). Symphytans may be recognized by the absence of a marked constriction between the first and second abdominal segments, and by the possession of at least one closed anal cell in the forewing. The larvae have well-developed head capsule and most have thoracic legs; the majority of free-feeding larvae are caterpillar-like with abdominal prolegs. With the exception of the Orussidae the larvae are phytophagous (Gauld & Bolton, 1988; Goulet & Huber, 1993).
    [Show full text]
  • The Naturalist the the Naturalist Naturalist The
    Union Yorkshire Number 1096 Volume 142 December 2017 December 2017 Volume 142 Number 1096 Yorkshire Union Photo: Ken White White Ken Photo: Photo: Ken White White Ken Photo: Back cover: Back Back cover: cover: Back YNU members in a colourful field on the Excursion to Eastrinton Ponds (VC61). (VC61). Ponds Eastrinton to Excursion the on field colourful a in members YNU YNU members in a colourful field on the Excursion to Eastrinton Ponds (VC61). (VC61). Ponds Eastrinton to Excursion the on field colourful a in members YNU by Ken White. Ken by by Ken White. White. Ken by Photographed on the YNU Excursion to Aysgarth Freeholders’ & St. John’s Wood-Riddings Field (VC65) (VC65) Field Wood-Riddings John’s St. & Freeholders’ Aysgarth to Excursion YNU the on Photographed Photographed on the YNU Excursion to Aysgarth Freeholders’ & St. John’s Wood-Riddings Field (VC65) (VC65) Field Wood-Riddings John’s St. & Freeholders’ Aysgarth to Excursion YNU the on Photographed Front cover: Front Front cover: cover: Front ) assaulting a hoverfly. a assaulting ) Fly Dung Yellow the (possibly fly Dung A A Dung fly (possibly the Yellow Dung Fly ) assaulting a hoverfly. hoverfly. a assaulting ) Fly Dung Yellow the (possibly fly Dung A stercorea Scathophaga Scathophaga stercorea stercorea Scathophaga An asterisk* indicates a peer-reviewed paper peer-reviewed a indicates asterisk* An An asterisk* indicates a peer-reviewed paper paper peer-reviewed a indicates asterisk* An Notice: Notice: Notice: Notice: YNU YNU YNU YNU p239 p239 p239 Book review: review: Book Book
    [Show full text]
  • Het Kweken Van Bladwespen (Hymenoptera: Symphyta)
    entomologische berichten 101 69 (3) 2009 Het kweken van bladwespen (Hymenoptera: Symphyta) Leo H. M. Blommers TREFWOORDEN Larvale ontwikkeling, verlengde diapauze, overliggen, ontwikkelingssnelheid Entomologische Berichten 69 (3): 101-110 Bladwespen vormen een interessante groep met een gevarieerde levenswijze. Omdat de groep relatief onbekend is, besteedt dit artikel aandacht aan kweekmethoden van deze insecten. Veel vrijlevende soorten zijn gemakkelijk te vinden. Hoe deze opgekweekt kunnen worden, wordt stap-voor-stap besproken. Eerst komen de waardplanten, vraatherkenning en verzamelmethoden aan bod. Vervolgens worden methoden, benodigd- heden en handige tips besproken die nodig zijn om thuis een efficiënte kweek te instaleren. Het zogenaamde afdalen, het moment dat de bladwesplarve haar voedselplant verlaat en op zoek gaat naar een plek om te verpoppen, en de overwintering van de bladwespen na het afdalen, worden in detail besproken met tips om ook deze processen in een kweek te laten slagen. De factoren die bepalen wanneer het uitkomen van het volwassen insect verwacht mag worden zijn complex en tonen ook veel variatie. Belangrijke eigenschappen zoals de voorkeur voor verpoppingsplekken en de verlengde diapauze krijgen extra aandacht. Dit stuk wil ook de grote entomoloog Snellen van Vollenhoven (1816-1880) in herinnering roepen, de stamvader van het onderzoek naar bladwespen in ons land. Inleiding plantenwesp begint als ei, daaruit komt de larve en deze raakt Over het opkweken van larven van bladwespen is in de oude tijd na ongeveer vier vervellingen volgroeid. In de meeste gevallen veel geschreven. De coryfee op dit gebied in Nederland is onge- verlaat deze larve de plant om in de grond af te dalen en daar twijfeld S.C.
    [Show full text]
  • Bees, Wasps & Ants
    Beeston and Sheringham Commons SSSI/cSAC FAUNA: Bees, Wasps and Ants Classification : English Name Scientific Name : Authority Tetrad/ Last Common Record HYMENOPTERA. (Bees, Wasps and Ants) PAMPHILIDAE: Sawfly. Pamphilius inanitus (Villers, 1789) 1987 ARGIDAE: Sawfly. Arge cyaneocrocea (Forster, 1771) 1987 Sawfly. Arge gracilicornis (Klug, 1814 ) 1987 CIMBICIDAE: Club-horned Sawfly. Abia sericera (Linnaeus) 14R/B 2014 Club-horned Sawfly. Zaraea fasciata Linnaeus, 1758 14R,14Q/B 2014 Birch Sawfly. Cimbex femoratus (Linnaeus, 1758) 14R/B 2014 SIRICIDAE: Greater Horntail Wasp. Urocerus gigas (Linnaeus, 1758) 14R/S CEPHIDAE: Sawfly. Calameuta pallipes (Klug, 1803) TENTHREDINIDAE: Willow Sawfly. Pontania proxima (Lepeletier, 1823) 14R/BS 2009 Willow Sawfly. Eupontania pedunculi (Hartig, 1837) 14R/B 1999 Willow Sawfly. Eupontainia viminalis (Linnaeus, 1758) 14R/B 2002 Willow Sawfly. Pontainia bridgemanii (Cameron, 1883) 14R/B 1999 Sawfly. Caliroa annulipes (Klug, 1816) 14R/S 2002 Sawfly. Blennocampa phyllocolpa Viitasaari & Vikberg, 1985 14R,14Q/B 2003 Sawfly. Selandria serva (Fabricius, 1793) 14R/B 2013 Sawfly. Aneugmenus padi (Linnaeus, 1761) 1987 Sawfly. Strongylogaster lineata (Christ, 1791) 1987 Sawfly. Dichrodolerus vestigialis (Klug, 1818) 1987 Sawfly. Dolerus germanicus (Fabricius, 1775) 1987 Sawfly. Poodolerus aeneus Hartig, 1837 1987 Sawfly. Dolerus brevitarus Hartig 1987 Sawfly. Dolerus sanquinicollis (Klug, 1818) 1987 Sawfly. Poodolerus niger (Linnaeus, 1767) 1987 Sawfly. Achaetoprion ferrugatus Lepeletier, 1823 14R/B 2002 Sawfly. Ametastegia glabrata (Fallén, 1808) Sawfly. Ametastegia equiseti (Fallén, 1808) Sawfly. Monostegia abdominalis (Fabricius, 1798) 14R/B 2013 Sawfly. Empria excisa (Thompson, 1871) 1987 Sawfly. Allantus cinctus (Linnaeus, 1758) 1987 Sawfly. Allantus melanarius (Klug, 1818) 1987 Sawfly. Macrophya ribis (Linnaeus, 1758) 1987 Sawfly. Rhogogaster punctulata (Klug, 1817) 1987 Sawfly. Rhogogaster viridis (Linnaeus, 1758)) 14R/B 2009 Sawfly.
    [Show full text]
  • Intriguing Insects Miniguide
    Birch Sawfly Longhorn moth Snakefly S M S M S M Cimbex femoratus 25 mm May-Aug. Adela sp. 14-18 mm May-Jun. Rhapidioptera 15 mm May Sep. Has a distinctive pale band on the dark abdomen and antennae A small day-flying moth with very long antennae and bronze or A long thin insect, with an elongated prothorax (neck) and long have yellow tips. Found in woodland and gardens with Birch metallic forewings. Found in woodland and gardens, sometimes antennae. Stands with raised head in an s-shaped, snake-like trees. in swarms of 20 or more individuals. pose. Found in woodland and gardens. Hornet Wasp Beetle Silverfish S M S M S M Vespa crabro 25-35 mm Apr-Oct. Clytus arietis 16 mm May-Aug. Lepisma saccharina 12 mm All year. 0 . 3 A S - Y B C C r e h c s i F n a ti s i r h C © Body has an obvious waist and yellow and brown stripes. Less A harmless beetle that feeds on flowers. Its distinctive colours A harmless, flightless insect covered in silvery scales. Found in aggressive than the Common Wasp, a useful pollinator. Often and stripes mimic a wasp, helping to give it protection from damp, humid areas such as leaf litter and in houses in kitchens seen in late summer feeding on fruit trees. predators. Found in woodlands and hedgerows. and bathrooms. Varied Carpet Beetle Western Conifer Seed Bug Intriguing S M S M Anthrenus verbasci 3 mm May-Aug. Leptoglossus occidentalis 20 mm All year.
    [Show full text]
  • Symphyta (Sawflies)
    SCOTTISH INVERTEBRATE SPECIES KNOWLEDGE DOSSIER Hymenoptera: Symphyta (Sawflies) A. NUMBER OF SPECIES IN UK: 527 B. NUMBER OF SPECIES IN SCOTLAND: 401 (including 1 introduced) C. EXPERT CONTACTS Please contact [email protected] for details. D. SPECIES OF CONSERVATION CONCERN Listed species None – insufficient data. Other species Amauronematus abnormis . An arctic species known from only two sites in the Cairngorms Plateau. The host plant, Salix herbacea is widespread, and so the limiting factor is almost certainly climatic. A. abnormis requires very cold climatic conditions that ensure snow patches lie until late summer. This species is likely to be effected by warming climatic conditions. No other species are known to be of conservation concern based upon the limited information available. Conservation status will be more thoroughly assessed as more information is gathered. Host plants Many species of sawfly are monophagous, with several high altitude speces relying on single Salix species such as S. arbuscula , S. lapponum and S, myrsinites , which have suffered serious declines in range and density since recording began 150 years ago. These declines have probably been caused by increased grazing pressure. In many cases, the rarity of the sawfly is therefore already determined by the rarity of its host plant. 1 E. LIST OF SPECIES KNOWN FROM SCOTLAND (* indicates species that are restricted to Scotland in UK context) Cephidae Calameuta pallipes Hartigia xanthostoma Pamphiliidae Acantholyda erythrocephala Acantholyda posticalis Cephalcia
    [Show full text]
  • Sheringham and Beeston Regis Commons SSSI/Csac FAUNA: Bees, Wasps and Ants
    Sheringham and Beeston Regis Commons SSSI/cSAC FAUNA: Bees, Wasps and Ants HYMENOPTERA. (Bees, Wasps and Ants) PAMPHILIDAE: Sawfly. Pamphilius inanitus (Villers, 1789) 1987 List revision. ARGIDAE: Sawfly. Arge cyaneocrocea (Forster, 1771) 1987 List revision. Sawfly. Arge gracilicornis (Klug, 1814 ) 1987 List revision. CIMBICIDAE: Club-horned Sawfly. Abia sericera (Linnaeus) 1987 List revision. 04/06/2013 Area V (MCl) Larvae confirmed 14/09/13. Club-horned Sawfly. Zaraea fasciata Linnaeus, 1758 Determined KCD. 05/99 NNNS excursion. Birch Sawfly. Cimbex femoratus (Linnaeus, 1758) Determined KCD. SIRICIDAE: Greater Horntail Wasp. Urocerus gigas (Linnaeus, 1758) CEPHIDAE: Sawfly. Calameuta pallipes (Klug, 1803) 1987 List revision. TENTHREDINIDAE: Willow Sawfly. Pontania proxima (Lepeletier, 1823) 1975 report - no recorded date. Bean Gall on leaf (Salix fragilis ). Willow Sawfly. Eupontania pedunculi (Hartig, 1837) Hairy Leaf Gall (Salix cinerea ). Willow Sawfly. Eupontainia viminalis (Linnaeus, 1758) 1975 report - no recorded date. Bean Gall on leaf (Salix caprea ). '02 (JM). Willow Sawfly. Pontainia bridgemanii (Cameron, 1883) Bean Gall on leaf (Salix cinerea ). Sawfly. Caliroa annulipes (Klug, 1816) Larva on Oak (Quercus robar ). Determined KCD. Sawfly. Blennocampa phyllocolpa Viitasaari & Vikberg, 1985 Edges of leaflets rolled on Dog Rose (Rosa canina ). Sawfly. Selandria serva (Fabricius, 1793) 1987 List revision. Sawfly. Aneugmenus padi (Linnaeus, 1761) 1987 List revision. Sawfly. Strongylogaster lineata (Christ, 1791) 1987 List revision. Sawfly. Dichrodolerus vestigialis (Klug, 1818) Sawfly. Dolerus germanicus (Fabricius, 1775) 1987 List revision. Sawfly. Poodolerus aeneus Hartig, 1837 1987 List revision. Sawfly. Dolerus brevitarus Hartig 1987 List revision. Sawfly. Dolerus sanquinicollis (Klug, 1818) 1987 List revision. Sawfly. Poodolerus niger (Linnaeus, 1767) Sawfly. Achaetoprion ferrugatus Lepeletier, 1823 Sawfly.
    [Show full text]
  • Naturalist Vol: 5 (2) ISSN 2052-0654 Volume 5 Part 2: Autumn 2017
    Lakeland Naturalist Vol: 5 (2) ISSN 2052-0654 Volume 5 Part 2: Autumn 2017 Wildlife Reports: March 2017 – August 2017 41 Field Meeting reports: Lakeland 17 June 2017: Swindale 47 15 July 2017: Wetheral 48 Naturalist Notes & Records An instance of inland passage of Purple Sandpiper on the North — a journal of Cumbrian Natural History Pennines — Stephen Hewitt 50 Spotted Sandpiper (Actitis macularia) at Buttermere, 2017 — Nick Franklin 51 Fence-post entomology: unusual finds from north Cumbria in 2017 — Paul Kennedy 52 Autumn 2017 Drapetis assimilis Fallén (Diptera; Hybotidae) new to Cumbria — Stephen Hewitt 54 Northern Arches Moth (Apamea exulis) in Brampton, new to Cumbria — Rob Pickett 54 The Netted Carpet Moth (Eustroma reticulata): encounters with an iconic species — Guy Broome 55 Maps, data and a small hairy fungus — David Clarke 57 Nettle Clustercup Rust (Puccinia urticata) in 2017 — David Clarke 57 Articles Insects associated with old ash pollards in Borrowdale — Stephen Hewitt, Maurice Pankhurst, John Parker & John Read 59 Re-examination of two nineteenth century records of the Rough-legged Buzzard in Cumbria — Robin Sellers 75 Erratum - re fig. 2 in Walker & Walker (2017) ‘Squirrels in Naddle Forest’ in Lakeland Naturalist, 5 (1), p.36. 76 Lakeland Naturalist Vol. 5 Part 2 : published 1 December 2017 Published twice-yearly by Carlisle Natural History Society Carlisle Natural History Society – Winter Programme 2017-18 check website www.carlislenats.org.uk for updates Lakeland Naturalist ISSN 2052-0654 – a journal of Cumbrian natural
    [Show full text]
  • Species List 09/01/2017
    1 of 145 Glasgow Species List 09/01/2017 Group Type Group Taxon Common name Records First year Last year Designated Local BAP Aquatic Invertebrates acarine Hydracarina 11 2003 2010 Aquatic Invertebrates acarine Hydrachna 1 2007 2007 Aquatic Invertebrates amoeba Amoeba lescherae 1 1961 1961 Aquatic Invertebrates amoeba Polychaos dubium 2 1899 1899 Aquatic Invertebrates annelid Alboglossiphonia heteroclita 33 1959 2004 Aquatic Invertebrates annelid Dina lineata 4 1972 1973 Aquatic Invertebrates annelid Enchytraeidae Whiteworm 1 1999 1999 Aquatic Invertebrates annelid Erpobdella octoculata leeches 31 1913 2013 Aquatic Invertebrates annelid Erpobdella testacea 5 1995 2003 Aquatic Invertebrates annelid Glossiphonia complanata 16 1913 2013 Aquatic Invertebrates annelid Glossiphonia paludosa 1 1973 Aquatic Invertebrates annelid Haemopis sanguisuga horse leech 7 1913 2013 Aquatic Invertebrates annelid Helobdella stagnalis 33 1913 2014 Aquatic Invertebrates annelid Hirudinea Leech 10 1992 2016 Aquatic Invertebrates annelid Lumbriculidae 13 1997 2004 Aquatic Invertebrates annelid Naididae 16 1997 2004 Aquatic Invertebrates annelid Oligochaeta 36 1982 2015 Aquatic Invertebrates annelid Piscicolidae 1 2003 2003 Aquatic Invertebrates annelid Stylaria lacustris 1 1995 1995 Aquatic Invertebrates annelid Theromyzon tessulatum duck leech 10 1959 1998 Aquatic Invertebrates annelid Trochaeta subviridis 3 1973 Aquatic Invertebrates annelid Trocheta bykowskii 1 1981 1981 Aquatic Invertebrates annelid Trocheta subviridis 4 1966 1973 Aquatic Invertebrates annelid
    [Show full text]
  • The Sawfly Fauna of the Hautes-Pyrénées
    Bulletin de la Société entomologique de France, 118 (4), 2013 : 443-462. The sawfly fauna of the Hautes-Pyrénées (France), with results of the 15th International Sawfly Workshop, 2011 (Hymenoptera, Symphyta) by Henri Savina1, *, Andrew Liston2, *, Jean-Luc Boevé3, Erik Heibo4, Mikk Heidemaa5, Hans-Joachim Jacobs6, Ewald Jansen7, Tobias Malm8, Ad Mol9, Tineke Mol-Cramer9 & Andreas Taeger2 1 33 chemin Ramelet Moundi, bât. C – Apt. 16, F – 31100 Toulouse, France <[email protected]> 2 Senckenberg Deutsches Entomologisches Institut, Eberswalder Str. 90, D – 15374 Müncheberg, Germany <[email protected]> 3 IRSNB-KBIN, Royal Belgian Institut of Natural Sciences, rue Vautier 29, B – 1000 Bruxelles, Belgium 4 Rypeveien 34A, 3420 Lierskogen, Norway 5 Department of Zoology, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 6 Dorfstr. 41, D – 17495 Ranzin, Germany 7 Alter Marktweg 8, D – 04319 Leipzig, Germany 8 Department of Biology, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI – 80101 Joensuu, Finland 9 Marie Koenenstraat 12, NL – 5242 EA Rosmalen, The Netherlands * corresponding authors Abstract. – A faunistic survey of Hymenoptera Symphyta was conducted in the French department of Hautes- Pyrénées, and especially in the Pyrenees National Park, during the 15th International Workshop on Symphyta held in this region from 2011 May 24th to June 2nd. In total 176 species belonging to 8 Symphyta families were collected or observed, 92 of which are new for the Hautes-Pyrénées. Ardis sulcata (Cameron, 1882), Cladius ordubadensis Konow, 1892, Pristicampus arcticus (Lindqvist, 1959) and Pristiphora albitibia (Costa, 1859) are recorded for the first time in France, and in addition some species considered as rare in France were collected.
    [Show full text]