Magyarbangol Geológiai Szótár

Total Page:16

File Type:pdf, Size:1020Kb

Magyarbangol Geológiai Szótár KÁZMÉR MIKLÓS MAGYARBANGOL GEOLÓGIAI SZÓTÁR BUDAPEST 2019 A szótár elkészültét az Eötvös Loránd Tudományegyetem támogatta Lektorálta Papp Gábor 6 Dictionaries are like watches, the worst is better than none, and the best cannot be expected to go quite true. Samuel Johnson, 1784 Bevezetés A jelen MagyarBangol Geológiai Szótár az 1995-ben megjelent AngolBmagyar Geológiai Szótár kiegészítésének készült. Címszóanyaga annak megfelelő, mintegy 17.000 szó és szókapcsolat. A két szótár egymásnak nem tükörképe: a magyar és az angol megfelelők esetenként jelentősen eltérő jelentéstani terjedelme miatt valamennyi szópárt manuális ellenőrzésnek kellett alávetni, szükség esetén módosítva a jelentést, törölve, ill. beillesztve szinonímákat. A szótár nemcsak a szélesebb értelemben vett földtan szókincsét tartalmazza, hanem azokat a szavakat is, amelyekkel egy geológus szakmunkákat olvasva találkozhat (laboratóriumi eszközök, terepmunka eszközei, geofizikai alapszókincs, mászaki szavak, mélyfúrási, bányászati terminológia, alapvetÅ matematikai, fizikai, kémiai, biológiai szókincs stb). Köszönetnyilvánítás Számos szó és kifejezés B részben új B magyar megfelelÅjét javasolta Báldi Katalin, Bérczi Szaniszló, Haas János, ifj. Lorberer Árpád, Kercsmár Zsolt, Kondorosy Szabolcs, Kóródy Gergely, Kovács József Szilamér, Kovácsné Bodor Petra, Kern Zoltán, Mádlné Szőnyi Judit, Mikes Tamás, Mindszenty Andrea, Nagy Zoltán, Palotai Márton, Papp Gábor, Pelikán Pál, Szafián Péter, Török Kálmán és Váczi Tamás. Mindnyájuknak e helyen köszönöm meg segítségüket. Végül köszönetemet szeretném kifejezni lektoromnak, Papp Gábor 7 múzeumi tárigazgatónak, aki vállalta az angol helyesírás és a magyar megfelelÅk ellenÅrzésének hálátlan munkáját. Értékes tanácsait a szerkesztés során figyelembe vettem. Természetesen a szótárban maradt hibákért a felelÅsség teljes mértékben engem terhel. Ezúton kérem a szótár használóit, hogy a tévedésekre és hiányosságokra vonatkozó észrevételeiket, az esetleges magyarításra vonatkozó javaslataikat a következÅ címre juttassák el: Kázmér Miklós, ELTE Äslénytani Tanszék, 1117 Budapest, Pázmány Péter sétány 1/c. Tájékoztató Vastag betá jelöli a címszavakat. DÅlt betável szedett rövidítések jelzik esetenként azt a szakterületet, amelyben a szó az adott jelentésben használatos. ( ) Kerek zárójelben áll az angol szókapcsolatnak az értelem megváltozása nélkül elhagyható eleme, valamint a magyar megfelelÅnek értelmi kiegészítését, közelebbi megvilágítását szolgáló, mellÅzhetÅ része. ~ A tilde a vastagbetás címszót helyettesíti. / A virgula a vele összekapcsolt két szó felcserélhetÅségét, egyenértékáségét jelzi az adott szókapcsolatban. Pl. alpi/völgyi jégár/gleccser a következÅk tömör szótári alakja: alpi jégár, völgyi jégár, alpi gleccser, völgyi gleccser. , A vesszÅ szinoním jelentéseket választ el. ; A pontosvesszÅ eltérÅ jelentéseket választ el. (áll) állattan zoology (ang) angol English (ásv) ásványtan mineralogy (átv) átvitt értelemben figuratively 8 (Aus) ausztráliai szóhasználat Australian usage (bány) bányászat mining (barl) barlangtan speleology (biogeogr) biogeográfia biogeography (biol) biológia biology (biz) bizalmas szóhasználat familiar usage (D-Afr) dél-afrikai szóhasználat South African sage (elav) elavult obsolete (épít) építÅanyagipar construction materials (evol) evolúció evolution (fényk) fényképezés photography (fiz) fizika physics (fn) fÅnév noun (földr) földrajz geography (fr) francia French (fúrás) mélyfúrás drilling (GB) angliai szóhasználat English usage (gem) gemmológia gemmology (geod) geodézia geodesy (geofiz) geofizika geophysics (geokém) geokémia geochemistry (geol) geológia geology (geom) geometria geometry (geomorf) geomorfológia geomorphology (glac) glaciológia glaciology (hidr) hidrológia hydrology (ige) ige verbum (invert) gerinctelenek invertebrates (kb) körülbelül approximately (kém) kémia chemistry (koh) kohászat smelting (kÅbány) kÅbányászat quarrying (kÅz) kÅzettan petrology (kÅzetmech) kÅzetmechanika rock mechanics (közg) közgazdaságtan economy (krist) kristálytan crystallography (kronosztrat) kronosztratigráfia chronostratigraphy (lat) latin Latin (limn) limnológia limnology 9 (mat) matematika mathematics (mech) mechanika mechanics (mérn) mérnökgeológia engineering geology (met) meteorológia meteorology (mezÅgazd) mezÅgazdaság agronomy (mikr) mikroszkópia microscopy (mn) melléknév adjective (mász) mászaki gyakorlat engineering practice (ném) német German (növ) növénytan botany (óc) óceanográfia oceanography (ökol) ökológia ecology (olaj) olajipar oil industry (opt) optika optics (önt) öntészet foundry (Åsl) Åslénytan palaeontology (pl) többesszám plural (rég) régészet archaeology (rétegt) rétegtan stratigraphy (sing) egyesszám singular (skót) skóciai szóhasználat Scottish usage (spektr) spektroszkópia spectroscopy (stat) statisztika statistics (szed) szedimentológia sedimentology (szeiz) szeizmika seismics (szekv) szekvencia sztratigráfia sequence stratigraphy (talaj) talajtan soil science (tax) taxonómia taxonomy (tekt) tektonika tectonics (telep) teleptan economic geology (térk) térképészet cartography (topo) topográfia topography (ül.kÅz) üledékes kÅzettan sedimentary petrology (US) amerikai szóhasználat American usage (val) valószínáségszámítás probability calculus (vert) gerincesek vertebrates (vízép) vízépítés hydrological engineering (vízgazd) vízgazdálkodás water supply (vulk) vulkanológia volcanology 10 Forrásmunkák Alliquander Ö., Szabó Gy. (szerk.) (1987): Bányászat II. Fluidumbányászat. Mászaki értelmezÅ szótár 66. Akadémiai Kiadó, Budapest, 459 p. AngolBmagyar és magyarBangol kÅzetmechanikai szótár (1966). Kézirat. Bányászati Kutató Intézet, Budapest, 105 p. Arkell, W.J., Tomkeieff, S.I. (1953): English Rock Terms, Chiefly Used by Miners and Quarrymen. Geoffrey Cumberlege, Oxford University Press, Oxford, 139 p. Babinszki Edit 2000) A nyomfosszíliák szerepe egyes oligocén és miocén képződmények környezeti rekonstrukciójában. Szakdolgozat. ELTE Földtani Tanszék, Budapest, 90 p. Backhaus, K.-O. (1972): Technik-Wörterbuch Kristallografie. EnglischBde- utschBfranzösischBrussisch. VEB Verlag Technik, Berlin, 132 p. Bakos F. (1973): Idegen szavak és kifejezések szótára. Akadémiai Kiadó, Budapest, 927 p. Báldi T. (1979): A történeti földtan alapjai. Tankönyvkiadó, Budapest, 309 p. Balla Z. (1984): Szerkezetföldtani továbbképzÅ III. Szerkezeti formaelemek. Kézirat, 18 p. Banks, H.P. (1970): Evolution and Plants of the Past. Fundamentals of Botany Series. Macmillan, London, 170 p. Bárány N. (1961): Finommechanika, optika. Mászaki értelmezÅ szótár 16. Terra, Budapest, 214 p. Bates, R.L., Jackson, J.A. (eds.) (1980): Glossary of Geology. Second edition. American Geological Institute, Falls Church, Virginia, 751 p. Bathurst, R.G.C. (1979): Diagenesis in carbonate sediments: a review. B Geologische Rundschau 68/3, 848B855, Stuttgart. Biddle, K.T., Christie-Blick, N. (1985): Glossary B strike-slip deformation, basin formation and sedimentation. In Biddle, K.T., Christie-Blick, N. (eds.): Strike-Slip Deformation, Basin Formation and Deformation. B Society of Economic Paleontologists and Mineralogists, Special Publication 37, 375B385, Tulsa, Oklahoma. Bilkenroth, G., Schmidt, H. (Hrsg.) (1972): Dreizehnsprachiges Wörterbuch für Gebirgsmechanik. DeutschBbulgarischBenglischBfranzösischBpolnischB portugiesischB rumänischBrussischBschwedischBserbo-kroatischBspanischB tschechischBungarisch. Akademie-Verlag, Berlin, 511 p. Bogárdi J., Petrasovits I. (szerk.) (1980): Öntözési és vízrendezési értelmezÅ 11 szótár. Akadémiai Kiadó, Budapest, 960 p. Borlói A., Specziár A., Vagács G. (1987): Melléklet az orosz szövegá 13 nyelvá mérnökgeodéziai terminológiai szótárhoz. [ G,D<4>@:@(4R,F846 F:@&"D\... (1985)] Földmérési és Távérzékelési Intézet, Budapest, 59 p. Bulla B. (1954): Általános természeti földrajz II. Tankönyvkiadó, Budapest, 549 p. Butzer, K.W. (1976): Geomorphology From the Earth. Harper & Row, New York, 463 p. Butzer, K.W. (1986): A földfelszín formakincse. Gondolat, Budapest, 520 p. Fordította: Miczek Gy., Lóczy D. Campbell, A.C. (1976): The Country Life Guide to the Seashore and Shallow Seas of Britain and Europe. The Hamlyn Publishing Group Limited, Feltham, Middlesex, 320 p. Connor, J.J., Merriam, D.F. (1982): Glossary of statistical terms used in geology. In Dietrich, R.V., Dutro Jr., J.T., Foose, R.M. (compilers): AGI Data Sheets for Geology in the Field, Laboratory and Office, pp. 40.1B40.4. American Geological Institute, Alexandria, Virginia. Czelnai R., Szepesi D. (1986): Meteorológia. Mászaki értelmezÅ szótár 56. Akadémiai Kiadó, Budapest, 596 p. Császár G., Haas J. (szerk.) (1983): Magyarország litosztratigráfiai formációi. Magyar Állami Földtani Intézet, Budapest. [poszter] Csáti E. (szerk.) (1976): Többnyelvá kartográfiai automatizálási értelmezÅ szótár. IBII. Kézirat. MÉM Országos Földügyi és Térképészeti Hivatal, Budapest, 575 p. Csatkai D. (1976B1985): Hatnyelvá geodéziai szakszótár. IBV. Magyar nyelvá értelmezéssel (angol, eszperantó, francia, magyar, német, orosz). Budapesti Geodéziai és Térképészeti Vállalat, Budapest, I: 322 p., II: 388 p., III: 374 p., IV: 343 p., V: 352 p. Csobok V., Kindlovits P., Mistéth E. (1973): Ötnyelvá vízgazdálkodási szógyáj- temény I. MagyarBangolBfranciaBnémetBorosz. Vízügyi Dokumentációs és Tájékoztató Iroda, Budapest, 1087 p. Csárös Z. (szerk.) (1961): Kémia. Mászaki értelmezÅ szótár 17B18. Terra, Budapest, 403 p. Dale Seymour Publications (1988): Polyhedra. In CABISCO Mathematics, Fall 1988, p. 13. Dank V. (1983): KÅolajföldtan. Egyetemi jegyzet.
Recommended publications
  • Sarkinite Mn (Aso4)(OH)
    2+ Sarkinite Mn2 (AsO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals typically thick tabular {100}, elongated, to 4 mm, short prismatic, or tabular along [010]. May be crudely spherical, granular massive. Physical Properties: Cleavage: On {100}, distinct. Fracture: Subconchoidal to uneven. Hardness = 4–5 D(meas.) = 4.08–4.18 D(calc.) = 4.20 Optical Properties: Semitransparent. Color: Flesh-red to dark blood-red, rose-red, orange, orange-brown, brown, reddish yellow to yellow; pale rose to yellow in transmitted light. Streak: Rose-red to yellow. Luster: Greasy. Optical Class: Biaxial (–). Pleochroism: Weak. Orientation: Y = b; X ∧ c = –54◦. Dispersion: r< v. Absorption: X > Z > Y. α = 1.790–1.793 β = 1.794–1.807 γ = 1.798–1.809 2V(meas.) = 83◦ Cell Data: Space Group: P 21/a. a = 12.779(2) b = 13.596(2) c = 10.208(2) β = 108◦530 Z=16 X-ray Powder Pattern: Pajsberg [Harstigen mine, near Persberg], Sweden. 3.18 (10), 3.04 (10), 3.29 (9), 3.48 (8), 2.90 (7), 2.65 (6), 6.0 (3) Chemistry: (1) (2) (3) (1) (2) (3) P2O5 0.21 ZnO 0.15 As2O5 41.60 44.09 43.23 PbO 0.25 CO2 0.76 MgO 0.98 0.19 FeO 0.13 0.02 CaO 1.40 0.29 MnO 51.60 51.77 53.38 H2O 3.06 [3.40] 3.39 CuO 0.01 insol. 0.38 Total 100.37 [99.92] 100.00 (1) Pajsberg [Harstigen mine, near Persberg], Sweden.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Raman and Infrared Spectroscopy of Arsenates of the Roselite and Fairfeldite Mineral Subgroups
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray (2009) Raman and infrared spectroscopy of arsenates of the roselite and fair- feldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1788-1794. This file was downloaded from: https://eprints.qut.edu.au/17596/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher. Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.039 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. (2009) Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5). pp. 1788-1794. © Copyright 2009 Elsevier Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups Ray L. Frost• Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Abstract Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and 2+ fairfieldite subgroups of formula Ca2B(AsO4)2.2H2O (where B may be Co, Fe , Mg, 2- Mn, Ni, Zn).
    [Show full text]
  • 1469 Vol 43#5 Art 03.Indd
    1469 The Canadian Mineralogist Vol. 43, pp. 1469-1487 (2005) BORATE MINERALS OF THE PENOBSQUIS AND MILLSTREAM DEPOSITS, SOUTHERN NEW BRUNSWICK, CANADA JOEL D. GRICE§, ROBERT A. GAULT AND JERRY VAN VELTHUIZEN† Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ABSTRACT The borate minerals found in two potash deposits, at Penobsquis and Millstream, Kings County, New Brunswick, are described in detail. These deposits are located in the Moncton Subbasin, which forms the eastern portion of the extensive Maritimes Basin. These marine evaporites consist of an early carbonate unit, followed by a sulfate, and fi nally, a salt unit. The borate assemblages occur in specifi c beds of halite and sylvite that were the last units to form in the evaporite sequence. Species identifi ed from drill-core sections include: boracite, brianroulstonite, chambersite, colemanite, congolite, danburite, hilgardite, howlite, hydroboracite, kurgantaite, penobsquisite, pringleite, ruitenbergite, strontioginorite, szaibélyite, trembathite, veatchite, volkovskite and walkerite. In addition, 41 non-borate species have been identifi ed, including magnesite, monohydrocalcite, sellaite, kieserite and fl uorite. The borate assemblages in the two deposits differ, and in each deposit, they vary stratigraphically. At Millstream, boracite is the most common borate in the sylvite + carnallite beds, with hilgardite in the lower halite strata. At Penobsquis, there is an upper unit of hilgardite + volkovskite + trembathite in halite and a lower unit of hydroboracite + volkov- skite + trembathite–congolite in halite–sylvite. At both deposits, values of the ratio of B isotopes [␦11B] range from 21.5 to 37.8‰ [21 analyses] and are consistent with a seawater source, without any need for a more exotic interpretation.
    [Show full text]
  • Inyoite Cab3o3(OH)5 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
    Inyoite CaB3O3(OH)5 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals, short prismatic along [001], tabular on {001}, exhibiting prominent {110} and {001} and a dozen other minor forms, to 2.5 cm; in cockscomb aggregates of pseudorhombohedral crystals; also coarse spherulitic, granular. Physical Properties: Cleavage: {001}, good; {010}, distinct. Fracture: Irregular. Tenacity: Brittle. Hardness = 2 D(meas.) = 1.875 D(calc.) = 1.87 Soluble in H2O. Optical Properties: Transparent, translucent on dehydration. Color: Colorless, white on dehydration. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c =37◦; Z ∧ c = –53◦. Dispersion: r< v, slight. α = 1.490–1.495 β = 1.501–1.505 γ = 1.516–1.520 2V(meas.) = 70◦–86◦ Cell Data: Space Group: P 21/a. a = 10.621(1)) b = 12.066(1) c = 8.408(1) β = 114◦1.2◦ Z=4 X-ray Powder Pattern: Monte Azul mine, Argentina. 7.67 (100), 2.526 (25), 3.368 (22), 1.968 (22), 2.547 (21), 3.450 (20), 2.799 (19) Chemistry: (1) (2) B2O3 37.44 37.62 CaO 20.42 20.20 + H2O 9.46 − H2O 32.46 H2O 42.18 rem. 0.55 Total 100.33 100.00 • (1) Hillsborough, Canada; remnant is gypsum. (2) CaB3O3(OH)5 4H2O. Occurrence: Along fractures and nodular in sedimentary borate deposits; may be authigenic in playa sediments. Association: Meyerhofferite, colemanite, priceite, hydroboracite, ulexite, gypsum. Distribution: In the USA, in California, from an adit on Mount Blanco, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co.
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • Gilalite Cu5si6o17 ² 7H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic, Probable
    Gilalite Cu5Si6O17 ² 7H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic, probable. Point Group: n.d. As spherules of radial ¯bers, to 0.3 mm. Physical Properties: Tenacity: Waxy or gummy. Hardness = 2 D(meas.) = 2.72(5) D(calc.) = [2.54] Optical Properties: Transparent or translucent. Color: Chrysocolla-green, inclining to pale blue-green. Luster: Nonmetallic. Optical Class: Biaxial ({). Pleochroism: Weak in drab grayish green. Orientation: Blades extinguish up to 8± from Z length. Absorption: Z > X = Y. ® = 1.560 ¯ = 1.635 ° = 1.635 2V(meas.) = Verky small. Cell Data: Space Group: n.d. a = 13.38 b = 19.16 c = 9.026 ¯ = 90± Z = [4] » X-ray Powder Pattern: Christmas, Arizona, USA. 13.4 (100), 7.786 (50), 4.790 (40), 3.897 (40), 10.97 (30), 6.684 (30), 3.315 (30) Chemistry: (1) (2) SiO2 41.5 40.77 MnO 0.5 CuO 36.2 44.97 MgO 2.3 CaO 3.8 H2O 14.6 14.26 Total 98.9 100.00 (1) Christmas, Arizona, USA; average of two closely agreeing analyses. (2) Cu5Si6O17 ² 7H2O: Occurrence: A retrograde metamorphic or mesogene mineral formed at the expense of a prograde calc-silicate and sul¯de assemblage; in tactites, commonly incrusting fractures; also ¯lling cracks or interstices in diopside grains (Christmas, Arizona, USA). Association: Kinoite, apachite, stringhamite, junitoite, clinohedrite, xonotlite, diopside, apophyllite, calcite, tobermorite (Christmas, Arizona, USA). Distribution: From the Christmas copper mine, Gila Co., and the Lonestar [ckname??] deposit, near Sa®ord, Graham Co., Arizona, USA. Name: For Gila Co., Arizona, USA, where it was found.
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]
  • The Picking Table Volume 8, No. 1
    THE PICKING TABLE FRANKLIN OGDENSBURG MINSHALOGICAL SOCIETY, INC, P. 0. BOJC 146 FRANKLIN, H.J., 07416 VOLUME VIII FEBRUARY 196? NUMBER 1 The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. CLUB PROGRAM - SPRING 1967 All meetings will be held at the Hardyston School, intersection of Routes #23 and #517, Franklin, N. J. Pre meeting activities start at 1:00 P.A. Speaker will be announced at 2:30 P.M. Sunday, Field trip, 9=00 A..-I. to Noon - March 19th. Buckwheat Dump, Franklin, N.J. Meeting, 2:30 P.M. Speaker, Paul Desautels Subject - Blood Relatives Among the Minerals. Saturday, Field trip, 9:00 A.M. to Noon - April 15th Buckwheat Dump, Franklin, N.J. Meeting, 2:30 P.M. Speaker - Dr. Paul Moore. Subject - The Mineralogy of Langban, Sweden. Saturday, Field trip, 9:00 A.M. to Noon - Open Cuts, May 20th Sterling Hill Mine, Ogdensburg, H. J. Meeting, 2:30 P.M. Speaker - Dr. Clifford Frondel Subject - Franklin Minerals, New and Old Saturday, Field trio, 9:00 A.M. to Noon - June 17th Farber Quarry, Cork Hill Road, Franklin, ..J, Meeting, 2:30 P.JL Speaker - Robert Metsger Subject - The Geology of Sterling Hill. Special Events April 22/23 1967 Earth Science and Gem Show Mineralogical Society of Pennsylvania, Route 30, Lancaster, Pa. May 6/7th 3rd Annual Mineral and Gem Show Matawan Mineralogical Society, Matawan Regional High School, Matawan, ft. June 29/July 2nd 1967 National Gem and Mineral Show, Eastern Federation, Washington Hilton Hotel, Washington, D.C.
    [Show full text]
  • By Michael Fleischer and Constance M. Schafer Open-File Report 81
    U.S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY THE FORD-FLEISCHER FILE OF MINERALOGICAL REFERENCES, 1978-1980 INCLUSIVE by Michael Fleischer and Constance M. Schafer Open-File Report 81-1174 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards 1981 The Ford-Fleischer File of Mineralogical References 1978-1980 Inclusive by Michael Fleischer and Constance M. Schafer In 1916, Prof. W.E. Ford of Yale University, having just published the third Appendix to Dana's System of Mineralogy, 6th Edition, began to plan for the 7th Edition. He decided to create a file, with a separate folder for each mineral (or for each mineral group) into which he would place a citation to any paper that seemed to contain data that should be considered in the revision of the 6th Edition. He maintained the file in duplicate, with one copy going to Harvard University, when it was agreed in the early 1930's that Palache, Berman, and Fronde! there would have the main burden of the revision. A number of assistants were hired for the project, including C.W. Wolfe and M.A. Peacock to gather crystallographic data at Harvard, and Michael Fleischer to collect and evaluate chemical data at Yale. After Prof. Ford's death in March 1939, the second set of his files came to the U.S. Geological Survey and the literature has been covered since then by Michael Fleischer. Copies are now at the U.S. Geological Survey at Reston, Va., Denver, Colo., and Menlo Park, Cal., and at the U.S.
    [Show full text]