NVIDIA Delivers Greatest-Ever Generational Leap with Geforce RTX 30 Series Gpus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ray-Tracing in Vulkan.Pdf
Ray-tracing in Vulkan A brief overview of the provisional VK_KHR_ray_tracing API Jason Ekstrand, XDC 2020 Who am I? ▪ Name: Jason Ekstrand ▪ Employer: Intel ▪ First freedesktop.org commit: wayland/31511d0e dated Jan 11, 2013 ▪ What I work on: Everything Intel but not OpenGL front-end – src/intel/* – src/compiler/nir – src/compiler/spirv – src/mesa/drivers/dri/i965 – src/gallium/drivers/iris 2 Vulkan ray-tracing history: ▪ On March 19, 2018, Microsoft announced DirectX Ray-tracing (DXR) ▪ On September 19, 2018, Vulkan 1.1.85 included VK_NVX_ray_tracing for ray- tracing on Nvidia RTX GPUs ▪ On March 17, 2020, Khronos released provisional cross-vendor extensions: – VK_KHR_ray_tracing – SPV_KHR_ray_tracing ▪ Final cross-vendor Vulkan ray-tracing extensions are still in-progress within the Khronos Vulkan working group 3 Overview: My objective with this presentation is mostly educational ▪ Quick overview of ray-tracing concepts ▪ Walk through how it all maps to the Vulkan ray-tracing API ▪ Focus on the provisional VK/SPV_KHR_ray_tracing extension – There are several details that will likely be different in the final extension – None of that is public yet, sorry. – The general shape should be roughly the same between provisional and final ▪ Not going to discuss details of ray-tracing on Intel GPUs 4 What is ray-tracing? All 3D rendering is a simulation of physical light 6 7 8 Why don't we do all 3D rendering this way? The primary problem here is wasted rays ▪ The chances of a random photon from the sun hitting your scene is tiny – About 1 in -
Adaptive Bitrate Streaming in Cloud Gaming Lambert Wang Worcester Polytechnic Institute
CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@WPI Worcester Polytechnic Institute Digital WPI Major Qualifying Projects (All Years) Major Qualifying Projects March 2017 Adaptive Bitrate Streaming in Cloud Gaming Lambert Wang Worcester Polytechnic Institute Matthew aJ mes Suarez Worcester Polytechnic Institute Robyn Angela Domanico Worcester Polytechnic Institute Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all Repository Citation Wang, L., Suarez, M. J., & Domanico, R. A. (2017). Adaptive Bitrate Streaming in Cloud Gaming. Retrieved from https://digitalcommons.wpi.edu/mqp-all/431 This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact [email protected]. Adaptive Bitrate Streaming in Cloud Gaming A Major Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree in Bachelor of Science Robyn Domanico Matt Suarez Lambert Wang frdomanico, mjsuarez, [email protected] Advised by Mark Claypool [email protected] March 19, 2017 1 Abstract Cloud gaming streams games as video from a server directly to a client device making it susceptible to network congestion. Adaptive bitrate streaming estimates the bottleneck capacity of a network and sets appropriate encoding parameters to avoid exceeding the bandwidth of the connection. BBR is a congestion control algorithm as an alternative to current loss-based congestion control. We designed and implemented a bitrate adaptation heuristic based on BBR into GamingAnywhere, an open source cloud gaming platform. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Directx ® Ray Tracing
DIRECTX® RAYTRACING 1.1 RYS SOMMEFELDT INTRO • DirectX® Raytracing 1.1 in DirectX® 12 Ultimate • AMD RDNA™ 2 PC performance recommendations AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 2 WHAT IS DXR 1.1? • Adds inline raytracing • More direct control over raytracing workload scheduling • Allows raytracing from all shader stages • Particularly well suited to solving secondary visibility problems AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 3 NEW RAY ACCELERATOR AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 4 DXR 1.1 BEST PRACTICES • Trace as few rays as possible to achieve the right level of quality • Content and scene dependent techniques work best • Positive results when driving your raytracing system from a scene classifier • 1 ray per pixel can generate high quality results • Especially when combined with techniques and high quality denoising systems • Lets you judiciously spend your ray tracing budget right where it will pay off AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 5 USING DXR 1.1 TO TRACE RAYS • DXR 1.1 lets you call TraceRay() from any shader stage • Best performance is found when you use it in compute shaders, dispatched on a compute queue • Matches existing asynchronous compute techniques you’re already familiar with • Always have just 1 active RayQuery object in scope at any time AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 6 RESOURCE BALANCING • Part of our ray tracing system -
Visualization Tools and Trends a Resource Tour the Obligatory Disclaimer
Visualization Tools and Trends A resource tour The obligatory disclaimer This presentation is provided as part of a discussion on transportation visualization resources. The Atlanta Regional Commission (ARC) does not endorse nor profit, in whole or in part, from any product or service offered or promoted by any of the commercial interests whose products appear herein. No funding or sponsorship, in whole or in part, has been provided in return for displaying these products. The products are listed herein at the sole discretion of the presenter and are principally oriented toward transportation practitioners as well as graphics and media professionals. The ARC disclaims and waives any responsibility, in whole or in part, for any products, services or merchandise offered by the aforementioned commercial interests or any of their associated parties or entities. You should evaluate your own individual requirements against available resources when establishing your own preferred methods of visualization. What is Visualization • As described on Wikipedia • Illustration • Information Graphics – visual representations of information data or knowledge • Mental Image – imagination • Spatial Visualization – ability to mentally manipulate 2dimensional and 3dimensional figures • Computer Graphics • Interactive Imaging • Music visual IEEE on Visualization “Traditionally the tool of the statistician and engineer, information visualization has increasingly become a powerful new medium for artists and designers as well. Owing in part to the mainstreaming -
Geforce ® RTX 2070 Overclocked Dual
GAMING GeForce RTX™ 2O7O 8GB XLR8 Gaming Overclocked Edition Up to 6X Faster Performance Real-Time Ray Tracing in Games Latest AI Enhanced Graphics Experience 6X the performance of previous-generation GeForce RTX™ 2070 is light years ahead of other cards, delivering Powered by NVIDIA Turing, GeForce™ RTX 2070 brings the graphics cards combined with maximum power efficiency. truly unique real-time ray-tracing technologies for cutting-edge, power of AI to games. hyper-realistic graphics. GRAPHICS REINVENTED PRODUCT SPECIFICATIONS ® The powerful new GeForce® RTX 2070 takes advantage of the cutting- NVIDIA CUDA Cores 2304 edge NVIDIA Turing™ architecture to immerse you in incredible realism Clock Speed 1410 MHz and performance in the latest games. The future of gaming starts here. Boost Speed 1710 MHz GeForce® RTX graphics cards are powered by the Turing GPU Memory Speed (Gbps) 14 architecture and the all-new RTX platform. This gives you up to 6x the Memory Size 8GB GDDR6 performance of previous-generation graphics cards and brings the Memory Interface 256-bit power of real-time ray tracing and AI to your favorite games. Memory Bandwidth (Gbps) 448 When it comes to next-gen gaming, it’s all about realism. GeForce RTX TDP 185 W>5 2070 is light years ahead of other cards, delivering truly unique real- NVLink Not Supported time ray-tracing technologies for cutting-edge, hyper-realistic graphics. Outputs DisplayPort 1.4 (x2), HDMI 2.0b, USB Type-C Multi-Screen Yes Resolution 7680 x 4320 @60Hz (Digital)>1 KEY FEATURES SYSTEM REQUIREMENTS Power -
Tracepro's Accurate LED Source Modeling Improves the Performance of Optical Design Simulations
TECHNICAL ARTICLE March, 2015 TracePro’s accurate LED source modeling improves the performance of optical design simulations. Modern optical modeling programs allow product design engineers to create, analyze, and optimize LED sources and LED optical systems as a virtual prototype prior to manufacturing the actual product. The precision of these virtual models depends on accurately representing the components that make up the model, including the light source. This paper discusses the physics behind light source modeling, source modeling options in TracePro, selection of the best modeling method, comparing modeled vs measured results, and source model reporting. Ray Tracing Physics and Source Representation In TracePro and other ray tracing programs, LED sources are represented as a series of individual rays, each with attributes of wavelength, luminous flux, and direction. To obtain the most accurate results, sources are typically represented using millions of individual rays. Source models range from simple (e.g. point source) to complex (e.g. 3D model) and can involve complex interactions completely within the source model. For example, a light source with integrated TIR lens can effectively be represented as a “source” in TracePro. However, sources are usually integrated with other components to represent the complete optical system. We will discuss ray tracing in this context. Ray tracing engines, in their simplest form, employ Snell’s Law and the Law of Reflection to determine the path and characteristics of each individual ray as it passes through the optical system. Figure 1 illustrates a simple optical system with reflection and refraction. Figure 1 – Simple ray trace with refraction and reflection TracePro’s sophisticated ray tracing engine incorporates specular transmission and reflection, scattered transmission and reflection, absorption, bulk scattering, polarization, fluorescence, diffraction, and gradient index properties. -
Defendant Apple Inc.'S Proposed Findings of Fact and Conclusions Of
Case 4:20-cv-05640-YGR Document 410 Filed 04/08/21 Page 1 of 325 1 THEODORE J. BOUTROUS JR., SBN 132099 MARK A. PERRY, SBN 212532 [email protected] [email protected] 2 RICHARD J. DOREN, SBN 124666 CYNTHIA E. RICHMAN (D.C. Bar No. [email protected] 492089; pro hac vice) 3 DANIEL G. SWANSON, SBN 116556 [email protected] [email protected] GIBSON, DUNN & CRUTCHER LLP 4 JAY P. SRINIVASAN, SBN 181471 1050 Connecticut Avenue, N.W. [email protected] Washington, DC 20036 5 GIBSON, DUNN & CRUTCHER LLP Telephone: 202.955.8500 333 South Grand Avenue Facsimile: 202.467.0539 6 Los Angeles, CA 90071 Telephone: 213.229.7000 ETHAN DETTMER, SBN 196046 7 Facsimile: 213.229.7520 [email protected] ELI M. LAZARUS, SBN 284082 8 VERONICA S. MOYÉ (Texas Bar No. [email protected] 24000092; pro hac vice) GIBSON, DUNN & CRUTCHER LLP 9 [email protected] 555 Mission Street GIBSON, DUNN & CRUTCHER LLP San Francisco, CA 94105 10 2100 McKinney Avenue, Suite 1100 Telephone: 415.393.8200 Dallas, TX 75201 Facsimile: 415.393.8306 11 Telephone: 214.698.3100 Facsimile: 214.571.2900 Attorneys for Defendant APPLE INC. 12 13 14 15 UNITED STATES DISTRICT COURT 16 FOR THE NORTHERN DISTRICT OF CALIFORNIA 17 OAKLAND DIVISION 18 19 EPIC GAMES, INC., Case No. 4:20-cv-05640-YGR 20 Plaintiff, Counter- DEFENDANT APPLE INC.’S PROPOSED defendant FINDINGS OF FACT AND CONCLUSIONS 21 OF LAW v. 22 APPLE INC., The Honorable Yvonne Gonzalez Rogers 23 Defendant, 24 Counterclaimant. Trial: May 3, 2021 25 26 27 28 Gibson, Dunn & Crutcher LLP DEFENDANT APPLE INC.’S PROPOSED FINDINGS OF FACT AND CONCLUSIONS OF LAW, 4:20-cv-05640- YGR Case 4:20-cv-05640-YGR Document 410 Filed 04/08/21 Page 2 of 325 1 Apple Inc. -
Ray-Tracing Procedural Displacement Shaders
Ray-tracing Procedural Displacement Shaders Wolfgang Heidrich and Hans-Peter Seidel Computer Graphics Group University of Erlangen fheidrich,[email protected] Abstract displacement shaders are resolution independent and Displacement maps and procedural displacement storage efficient. shaders are a widely used approach of specifying geo- metric detail and increasing the visual complexity of a scene. While it is relatively straightforward to handle displacement shaders in pipeline based rendering systems such as the Reyes-architecture, it is much harder to efficiently integrate displacement-mapped surfaces in ray-tracers. Many commercial ray-tracers tessellate the surface into a multitude of small trian- Figure 1: A simple displacement shader showing a gles. This introduces a series of problems such as wave function with exponential decay. The underly- excessive memory consumption and possibly unde- ing geometry used for this image is a planar polygon. tected surface detail. In this paper we describe a novel way of ray-tracing Unfortunately, because displacement shaders mod- procedural displacement shaders directly, that is, ify the geometry, their use in many rendering systems without introducing intermediate geometry. Affine is limited. Since ray-tracers cannot handle proce- arithmetic is used to compute bounding boxes for dural displacements directly, many commercial ray- the shader over any range in the parameter domain. tracing systems, such as Alias [1], tessellate geomet- The method is comparable to the direct ray-tracing ric objects with displacement shaders into a mul- of B´ezier surfaces and implicit surfaces using B´ezier titude of small triangles. Unlike in pipeline-based clipping and interval methods, respectively. renderers, such as the Reyes-architecture [17], these Keywords: ray-tracing, displacement-mapping, pro- triangles have to be kept around, and cannot be ren- cedural shaders, affine arithmetic dered independently. -
Form 10-K Nvidia Corporation
Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 ____________________________________________________________________________________________ FORM 10-K [x] ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended January 28, 2018 OR [_] TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number: 0-23985 NVIDIA CORPORATION (Exact name of registrant as specified in its charter) Delaware 94-3177549 (State or other jurisdiction of (I.R.S. Employer Incorporation or Organization) Identification No.) 2788 San Tomas Expressway Santa Clara, California 95051 (408) 486-2000 (Address, including zip code, and telephone number, including area code, of principal executive offices) Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common Stock, $0.001 par value per share The NASDAQ Global Select Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ý No o Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes o No ý Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. -
Courrier Du CNRS 1991
Ce document a été réalisé à partir du document original de 1995. Il a été obtenu par scan (en 2017) de chaque page ensuite traitée, avant d’être reconstruit. Il peut donc présenter des légères différences ainsi que quelques coquilles mais son contenu est inchangé par rapport à celui du document original LE COURRIER DU CNRS Ce numéro du Courrier du CNRS a été DOSSIERS SCIENTIFIQUES préparé sous la direction du département scientifique Sciences pour l'ingénieur du CNRS. Directeur de la publication : Le Courrier du CNRS remercie les François Kourilsky auteurs et les organismes qui ont participé à ce dossier. REALISATION : Les titres, les chapeaux introductifs et CNRS-Atelier de l'Ecrit les résumés ont été rédigés par la Groupement des Unités de la rédaction. Communication du CNRS Les textes peuvent être reproduits sous I - place Aristide Briand réserve de l’autorisation du directeur 92195 Meudon Cedex de la publication. Prix : 50 francs. Vente au numéro : Direction : Bernard Hagene Presses du CNRS, 20-22, rue Saint- Rédaction en chef: Sylvie Langlois Amand, 75015 Paris- Rédaction : Pierrette Massonnet tél :(1) 45 33 16 00. Diffusion : Christine Girard Secrétariat: Muriel Hourüer Fabrication Coordination de la fabrication : COMITE SCIENTIFIQUE : J.O. - Communication, 10, avenue Bourgain, Coordinateur 92130 Issy-les-Moulineaux COUVERTURE Direction artistique ; Top Conseil. 18, rue Gérard Favier Volney, 75002 Paris - tél. : 42.96.14.58. Première étape du traitement du signal : Pierre-Y ves Arqués Impression : Roto-France-Impression, boulevard l'acquisition de l’information. de Beaubourg, Emerainville, 77327 Marne-la- Albert Bijaoui Vallée Cedex 2 - tél. : 60.06.60.00. -
GEFORCE NOW the NEW WAY to GAME Phil Eisler, General Manager, GDC 2016 OPPORTUNITY Netflix for Games
GEFORCE NOW THE NEW WAY TO GAME Phil Eisler, General Manager, GDC 2016 OPPORTUNITY Netflix for Games MOVIES MUSIC TV SHOWS GAMES 75M 20M 10M xxM 2 INSTANT Click-to-Play in 30 Seconds 53 min 30 sec 107 min 30 sec 160 min 30 sec 213 min 30 sec Download Stream 3 EASY Android Design Language | Voice Search | Categories Like Netflix 4 HOW GFN WORKS 150 ms 5 GLOBAL REACH EU NW US NW EU CE US East APAC US SW SEA 6 ENABLER — GLOBAL BROADBAND Doubles Every 3 Years Korea Japan Sweden USA Russia UK Germany 100 75 in Mbpsin 50 1080p60 25 peak connection speed peak 720p60 Average Average 0 2012 2013 2014 2015 Source: Akamai’s State of the Internet Reports 7 GAME CHANGER — 1080P 60FPS 8 THE FUTURE GeForce NOW Performance Increases Every Year 2017 Pascal 6x 2016 Maxwell 3x 2015 Kepler 1.5x Performance relative to Xbox One 9 EARLY ADOPTERS MILLENNIAL GAMERS <34 years old Earn <$75K Don’t have children “ Millennials are a huge generation of 90% impatient, digital natives, multi-taskers, GAMER DADS and gamers.” Male Age 35+ Source: New Jersey Institute of Technology Study Earn $75K+ Have children “ I have recently become a father and have learned that finding the time to play games is a luxury.” Source: Guide to Being a Gamer Dad 10 MEMBER MOMENTUM 20% Monthly Growth 3M+ Sessions 1M+ Hours 11 TOP REQUESTS 58% 22% 14% 6% More Games Multiplayer Achievements Better QoS 12 100 GAMES AND COUNTING Available to Click-and-Play 13 GEFORCE NOW PUBLISHERS More Publishers Joining Every Month 14 TOP GAMES October November December January February 15 TWO GAME MARKETS Day-and-Date and Back-Catalog $59 $49 $39 $29 $19 Game Store Game Pack GamePrice 0 3 6 9 12 15 18 21 24 27 30 33 36 Months from Launch 16 GAME SALES WORKING Full Price Sale Price Cumulative Sales 5000 900 4500 800 4000 700 3500 600 3000 500 2500 400 2000 300 1500 200 1000 500 100 0 0 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 Thanksgiving Holiday Winter Valentines Sale Sale Sale Sale Average tie-in ratio is 2% / week or 1 game/member/year.