Ray-Tracing Procedural Displacement Shaders

Total Page:16

File Type:pdf, Size:1020Kb

Ray-Tracing Procedural Displacement Shaders Ray-tracing Procedural Displacement Shaders Wolfgang Heidrich and Hans-Peter Seidel Computer Graphics Group University of Erlangen fheidrich,[email protected] Abstract displacement shaders are resolution independent and Displacement maps and procedural displacement storage efficient. shaders are a widely used approach of specifying geo- metric detail and increasing the visual complexity of a scene. While it is relatively straightforward to handle displacement shaders in pipeline based rendering systems such as the Reyes-architecture, it is much harder to efficiently integrate displacement-mapped surfaces in ray-tracers. Many commercial ray-tracers tessellate the surface into a multitude of small trian- Figure 1: A simple displacement shader showing a gles. This introduces a series of problems such as wave function with exponential decay. The underly- excessive memory consumption and possibly unde- ing geometry used for this image is a planar polygon. tected surface detail. In this paper we describe a novel way of ray-tracing Unfortunately, because displacement shaders mod- procedural displacement shaders directly, that is, ify the geometry, their use in many rendering systems without introducing intermediate geometry. Affine is limited. Since ray-tracers cannot handle proce- arithmetic is used to compute bounding boxes for dural displacements directly, many commercial ray- the shader over any range in the parameter domain. tracing systems, such as Alias [1], tessellate geomet- The method is comparable to the direct ray-tracing ric objects with displacement shaders into a mul- of B´ezier surfaces and implicit surfaces using B´ezier titude of small triangles. Unlike in pipeline-based clipping and interval methods, respectively. renderers, such as the Reyes-architecture [17], these Keywords: ray-tracing, displacement-mapping, pro- triangles have to be kept around, and cannot be ren- cedural shaders, affine arithmetic dered independently. This approach, however, defeats two of the reasons 1 Motivation for using procedural displacements in the first place: Procedural displacement shaders [7] are an impor- resolution independence and storage efficiency. The tant means of specifying geometric detail and surface storage requirements for representing a large number imperfections in synthetic scenes, which increases the of polygons (often hundreds of thousands or more), realism of computer generated images. Small surface as well as the spatial subdivision hierarchy required features, which would be tedious to model explic- for speeding up the intersection tests (often octrees) itly using a geometric modeling system, can often can be excessive, even for relatively simple shaders. be described by a few lines of code in a dedicated But tessellation-based methods also bear other, shading language, such as the RenderMan Shading more fundamental problems. Because the shader can Language [20, 10, 24]. only be evaluated at a discrete set of points, the ver- In contrast to simple surface shaders and bump tices of the output polygons, it is possible to miss maps [4], displacement shaders actually change the narrow features. This is particularly disturbing if geometry of the underlying surface. This allows for the displacements of those features are large. Most effects like self-occlusion and self-shadowing, and re- existing systems either disallow long and skinny dis- sults in more realistically looking images, in partic- placements, or require the user to explicitly specify ular in silhouette regions (see Figure 1). Procedural bounding volumes for them. As a final problem, numerical errors may oc- surface potentially passes through the cell, and the cur in intersection tests with many small polygons. cell is subdivided in an octree fashion, unless it is al- These can result in cracks between adjacent poly- ready small enough. Unlike Lipschitz bounds, inter- gons, which are difficult to avoid in implementations. val bounds can be automatically computed by spe- Given the potential benefits of displacement cific implementations of the basic library functions. shaders, and the shortcomings of tessellation-based Comba and Stolfi [5] and Figueiredo and Stolfi [9] implementations, the question is whether there is a used a similar algorithm, but replaced interval arith- way to directly ray-trace procedural displacements. metic with affine arithmetic, which they developed Such an algorithm should work directly on the proce- for this purpose. They showed that affine arithmetic dural description, without generating any intermedi- produces significantly tighter bounds than interval ate geometry. This would prevent cracking and pre- arithmetic, although at a higher cost. serve resolution independence. The method should In [12], we used affine arithmetic to obtain con- also guarantee intersections, in the sense that if an servative bounds for the value of procedural surface intersection exists, it will be found, no matter how shaders over a given parameter interval. This can fine the feature is. Since intersections with procedu- be used to drive a hierarchical sampling process, for ral displacements cannot be determined analytically, example in hierarchical radiosity. the algorithm should use a numerical method to iter- In this paper we extend the above ideas to ray- atively compute the closest intersection along a ray. tracing displacement shaders. We use affine arith- metic to hierarchically enumerate the geometry gen- 2 Prior Work erated by procedural shaders. In Section 3 we de- Several related algorithms for finding intersections scribe the basic algorithm. In Section 4 we then with a variety of different geometric objects have briefly review affine arithmetic, and discuss the is- been published. Nishita et al. [16] developed B´ezier sues involved when applying it to procedural shaders. clipping to compute ray intersections with (ratio- Sections 5 and 6 contain refinements of the basic al- nal) B´ezier patches. The algorithm first determines gorithm. Finally, in Section 7, we present experi- parameter regions that cannot contain intersection mental results obtained with our method. points. The surface is the re-parameterized over the remaining parameter range. This process is recur- sively repeated until the intersection point has been 3 Direct Ray-tracing of Displacement determined with a given precision. Shaders Barr [2, 3] computed ray intersections with de- Our iterative method for intersection tests with dis- formed objects by solving an initial value problem. placement shaders is based on the idea of hierarchi- This method works for both parametric and implicit cally subdividing the parameter domain of the sur- surfaces, but only for relatively simple global defor- face. Parameter regions, in which intersections might mations such as twists. It does not directly translate occur, are identified, and those regions in which in- to complex procedural deformations. tersections are not possible are discarded. Parameter Later, Kalra and Barr [13] developed a method ranges containing potential intersections are recur- for finding guaranteed intersections with implicit sur- sively refined, until the intersection has been deter- faces. Lipschitz bounds (global bounds on the deriva- mined within a pre-defined accuracy. The pseudo- tive of the implicit function) are used to spatially code in Figure 2 summarizes this algorithm. subdivide 3-space into cells, each of which contains at In order to detect potential intersections in a given most one intersection of the surface with the ray. The parameter range, we compute a bounding box for the exact intersection point is then found using the New- value of the displacement shader over this range. The ton method or regula falsi. Unfortunately, the com- recursion is terminated if the bounding box is small putation of Lipschitz bounds cannot be automated, enough. For primary rays this means that the projec- and thus the use of this algorithm is limited to cases tion of the box onto the screen is smaller than some where it is acceptable for the user to specify them. fraction of a pixel. As we will show in Section 3.1, Snyder [22, 23] and Duff [6] used interval arith- the bounding boxes can be obtained with the help of metic to recursively enumerate implicit surfaces with affine arithmetic. a hierarchical data structure. For each cell, the im- Figure 3 shows an example of this method. On plicit function is evaluated using interval arithmetic. the left side, you see the hierarchically subdivided This yields bounds for the value of the function in parameter domain for the intersection of a ray with this cell. If these bounds include the value zero, the the simple shader from Figure 1. On the right side, intersect(ray,shader,u1,u2,v1,v2) The displacement shader communicates with two f other parts of the rendering system, the geometry bBox= computeBBox(shader,u1,u2,v1,v2); processing stage and a surface shading stage. The if( intersects(ray,bBox) ) data flow between those parts is depicted in Figure 4. if( isSmallEnough(bBox) ) return bBox; u,v,du,dv implicit implicit params params else Geometry Displacement Surface f Processing Shader Shader ll= intersect(ray,shader, u1,(u1+u2)/2,v1,(v1+v2)/2); Figure 4: The data flow between selected parts of lr= intersect(ray,shader, the rendering system. (u1+u2)/2,u2,v1,(v1+v2)/2); ul= intersect(ray,shader, Given a parametric position (u; v) and sampling u1,(u1+u2)/2,(v1+v2)/2,v2); rate (du; dv), the geometry processing stage com- ur= intersect(ray,shader, putes a set of purely geometric terms for a given (u1+u2)/2,u2,(v1+v2)/2,v2); parametric surface. This includes the point in 3- return closest(ll,lr,ul,ur); space, as well as the geometric and the shading nor- g return NONE; mal in this point. g This set of geometric terms is then passed on to the displacement shader, which is allowed to change the Figure 2: The basic intersection algorithm. position of the point, as well as the shading normal. The most important parameters of a displacement shader are listed in Table 1. The shader does not have direct access to the underlying geometry of the surface.
Recommended publications
  • Ray-Tracing in Vulkan.Pdf
    Ray-tracing in Vulkan A brief overview of the provisional VK_KHR_ray_tracing API Jason Ekstrand, XDC 2020 Who am I? ▪ Name: Jason Ekstrand ▪ Employer: Intel ▪ First freedesktop.org commit: wayland/31511d0e dated Jan 11, 2013 ▪ What I work on: Everything Intel but not OpenGL front-end – src/intel/* – src/compiler/nir – src/compiler/spirv – src/mesa/drivers/dri/i965 – src/gallium/drivers/iris 2 Vulkan ray-tracing history: ▪ On March 19, 2018, Microsoft announced DirectX Ray-tracing (DXR) ▪ On September 19, 2018, Vulkan 1.1.85 included VK_NVX_ray_tracing for ray- tracing on Nvidia RTX GPUs ▪ On March 17, 2020, Khronos released provisional cross-vendor extensions: – VK_KHR_ray_tracing – SPV_KHR_ray_tracing ▪ Final cross-vendor Vulkan ray-tracing extensions are still in-progress within the Khronos Vulkan working group 3 Overview: My objective with this presentation is mostly educational ▪ Quick overview of ray-tracing concepts ▪ Walk through how it all maps to the Vulkan ray-tracing API ▪ Focus on the provisional VK/SPV_KHR_ray_tracing extension – There are several details that will likely be different in the final extension – None of that is public yet, sorry. – The general shape should be roughly the same between provisional and final ▪ Not going to discuss details of ray-tracing on Intel GPUs 4 What is ray-tracing? All 3D rendering is a simulation of physical light 6 7 8 Why don't we do all 3D rendering this way? The primary problem here is wasted rays ▪ The chances of a random photon from the sun hitting your scene is tiny – About 1 in
    [Show full text]
  • Directx ® Ray Tracing
    DIRECTX® RAYTRACING 1.1 RYS SOMMEFELDT INTRO • DirectX® Raytracing 1.1 in DirectX® 12 Ultimate • AMD RDNA™ 2 PC performance recommendations AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 2 WHAT IS DXR 1.1? • Adds inline raytracing • More direct control over raytracing workload scheduling • Allows raytracing from all shader stages • Particularly well suited to solving secondary visibility problems AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 3 NEW RAY ACCELERATOR AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 4 DXR 1.1 BEST PRACTICES • Trace as few rays as possible to achieve the right level of quality • Content and scene dependent techniques work best • Positive results when driving your raytracing system from a scene classifier • 1 ray per pixel can generate high quality results • Especially when combined with techniques and high quality denoising systems • Lets you judiciously spend your ray tracing budget right where it will pay off AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 5 USING DXR 1.1 TO TRACE RAYS • DXR 1.1 lets you call TraceRay() from any shader stage • Best performance is found when you use it in compute shaders, dispatched on a compute queue • Matches existing asynchronous compute techniques you’re already familiar with • Always have just 1 active RayQuery object in scope at any time AMD PUBLIC | DirectX® 12 Ultimate: DirectX Ray Tracing 1.1 | November 2020 6 RESOURCE BALANCING • Part of our ray tracing system
    [Show full text]
  • Visualization Tools and Trends a Resource Tour the Obligatory Disclaimer
    Visualization Tools and Trends A resource tour The obligatory disclaimer This presentation is provided as part of a discussion on transportation visualization resources. The Atlanta Regional Commission (ARC) does not endorse nor profit, in whole or in part, from any product or service offered or promoted by any of the commercial interests whose products appear herein. No funding or sponsorship, in whole or in part, has been provided in return for displaying these products. The products are listed herein at the sole discretion of the presenter and are principally oriented toward transportation practitioners as well as graphics and media professionals. The ARC disclaims and waives any responsibility, in whole or in part, for any products, services or merchandise offered by the aforementioned commercial interests or any of their associated parties or entities. You should evaluate your own individual requirements against available resources when establishing your own preferred methods of visualization. What is Visualization • As described on Wikipedia • Illustration • Information Graphics – visual representations of information data or knowledge • Mental Image – imagination • Spatial Visualization – ability to mentally manipulate 2dimensional and 3dimensional figures • Computer Graphics • Interactive Imaging • Music visual IEEE on Visualization “Traditionally the tool of the statistician and engineer, information visualization has increasingly become a powerful new medium for artists and designers as well. Owing in part to the mainstreaming
    [Show full text]
  • Geforce ® RTX 2070 Overclocked Dual
    GAMING GeForce RTX™ 2O7O 8GB XLR8 Gaming Overclocked Edition Up to 6X Faster Performance Real-Time Ray Tracing in Games Latest AI Enhanced Graphics Experience 6X the performance of previous-generation GeForce RTX™ 2070 is light years ahead of other cards, delivering Powered by NVIDIA Turing, GeForce™ RTX 2070 brings the graphics cards combined with maximum power efficiency. truly unique real-time ray-tracing technologies for cutting-edge, power of AI to games. hyper-realistic graphics. GRAPHICS REINVENTED PRODUCT SPECIFICATIONS ® The powerful new GeForce® RTX 2070 takes advantage of the cutting- NVIDIA CUDA Cores 2304 edge NVIDIA Turing™ architecture to immerse you in incredible realism Clock Speed 1410 MHz and performance in the latest games. The future of gaming starts here. Boost Speed 1710 MHz GeForce® RTX graphics cards are powered by the Turing GPU Memory Speed (Gbps) 14 architecture and the all-new RTX platform. This gives you up to 6x the Memory Size 8GB GDDR6 performance of previous-generation graphics cards and brings the Memory Interface 256-bit power of real-time ray tracing and AI to your favorite games. Memory Bandwidth (Gbps) 448 When it comes to next-gen gaming, it’s all about realism. GeForce RTX TDP 185 W>5 2070 is light years ahead of other cards, delivering truly unique real- NVLink Not Supported time ray-tracing technologies for cutting-edge, hyper-realistic graphics. Outputs DisplayPort 1.4 (x2), HDMI 2.0b, USB Type-C Multi-Screen Yes Resolution 7680 x 4320 @60Hz (Digital)>1 KEY FEATURES SYSTEM REQUIREMENTS Power
    [Show full text]
  • Tracepro's Accurate LED Source Modeling Improves the Performance of Optical Design Simulations
    TECHNICAL ARTICLE March, 2015 TracePro’s accurate LED source modeling improves the performance of optical design simulations. Modern optical modeling programs allow product design engineers to create, analyze, and optimize LED sources and LED optical systems as a virtual prototype prior to manufacturing the actual product. The precision of these virtual models depends on accurately representing the components that make up the model, including the light source. This paper discusses the physics behind light source modeling, source modeling options in TracePro, selection of the best modeling method, comparing modeled vs measured results, and source model reporting. Ray Tracing Physics and Source Representation In TracePro and other ray tracing programs, LED sources are represented as a series of individual rays, each with attributes of wavelength, luminous flux, and direction. To obtain the most accurate results, sources are typically represented using millions of individual rays. Source models range from simple (e.g. point source) to complex (e.g. 3D model) and can involve complex interactions completely within the source model. For example, a light source with integrated TIR lens can effectively be represented as a “source” in TracePro. However, sources are usually integrated with other components to represent the complete optical system. We will discuss ray tracing in this context. Ray tracing engines, in their simplest form, employ Snell’s Law and the Law of Reflection to determine the path and characteristics of each individual ray as it passes through the optical system. Figure 1 illustrates a simple optical system with reflection and refraction. Figure 1 – Simple ray trace with refraction and reflection TracePro’s sophisticated ray tracing engine incorporates specular transmission and reflection, scattered transmission and reflection, absorption, bulk scattering, polarization, fluorescence, diffraction, and gradient index properties.
    [Show full text]
  • Getting Started (Pdf)
    GETTING STARTED PHOTO REALISTIC RENDERS OF YOUR 3D MODELS Available for Ver. 1.01 © Kerkythea 2008 Echo Date: April 24th, 2008 GETTING STARTED Page 1 of 41 Written by: The KT Team GETTING STARTED Preface: Kerkythea is a standalone render engine, using physically accurate materials and lights, aiming for the best quality rendering in the most efficient timeframe. The target of Kerkythea is to simplify the task of quality rendering by providing the necessary tools to automate scene setup, such as staging using the GL real-time viewer, material editor, general/render settings, editors, etc., under a common interface. Reaching now the 4th year of development and gaining popularity, I want to believe that KT can now be considered among the top freeware/open source render engines and can be used for both academic and commercial purposes. In the beginning of 2008, we have a strong and rapidly growing community and a website that is more "alive" than ever! KT2008 Echo is very powerful release with a lot of improvements. Kerkythea has grown constantly over the last year, growing into a standard rendering application among architectural studios and extensively used within educational institutes. Of course there are a lot of things that can be added and improved. But we are really proud of reaching a high quality and stable application that is more than usable for commercial purposes with an amazing zero cost! Ioannis Pantazopoulos January 2008 Like the heading is saying, this is a Getting Started “step-by-step guide” and it’s designed to get you started using Kerkythea 2008 Echo.
    [Show full text]
  • Ray Tracing (Shading)
    CS4620/5620: Lecture 35 Ray Tracing (Shading) Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita Bala • 1 (with previous instructors James/Marschner) Announcements • 4621 – Class today • Turn in HW3 • PPA3 is going to be out today • PA3A is out Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita Bala • 2 (with previous instructors James/Marschner) Shading • Compute light reflected toward camera • Inputs: – eye direction – light direction (for each of many lights) l n – surface normal v – surface parameters (color, shininess, …) Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita Bala • 3 (with previous instructors James/Marschner) Light • Local light – Position • Directional light (e.g., sun) – Direction, no position Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita Bala • 4 (with previous instructors James/Marschner) Lambertian shading • Shading independent of view direction illumination from source l n Ld = kd I max(0, n l) Q v · diffuse coefficient diffusely reflected light Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita Bala • 5 (with previous instructors James/Marschner) Image so far Scene.trace(Ray ray, tMin, tMax) { surface, t = hit(ray, tMin, tMax); if surface is not null { point = ray.evaluate(t); normal = surface.getNormal(point); return surface.shade(ray, point, normal, light); } else return backgroundColor; } … Surface.shade(ray, point, normal, light) { v = –normalize(ray.direction); l = normalize(light.pos – point); // compute shading } Cornell CS4620/5620 Fall 2012 • Lecture 35 © 2012 Kavita
    [Show full text]
  • NVIDIA Ampere GA102 GPU Architecture Whitepaper
    NVIDIA AMPERE GA102 GPU ARCHITECTURE Second-Generation RTX Updated with NVIDIA RTX A6000 and NVIDIA A40 Information V2.0 Table of Contents Introduction 5 GA102 Key Features 7 2x FP32 Processing 7 Second-Generation RT Core 7 Third-Generation Tensor Cores 8 GDDR6X and GDDR6 Memory 8 Third-Generation NVLink® 8 PCIe Gen 4 9 Ampere GPU Architecture In-Depth 10 GPC, TPC, and SM High-Level Architecture 10 ROP Optimizations 11 GA10x SM Architecture 11 2x FP32 Throughput 12 Larger and Faster Unified Shared Memory and L1 Data Cache 13 Performance Per Watt 16 Second-Generation Ray Tracing Engine in GA10x GPUs 17 Ampere Architecture RTX Processors in Action 19 GA10x GPU Hardware Acceleration for Ray-Traced Motion Blur 20 Third-Generation Tensor Cores in GA10x GPUs 24 Comparison of Turing vs GA10x GPU Tensor Cores 24 NVIDIA Ampere Architecture Tensor Cores Support New DL Data Types 26 Fine-Grained Structured Sparsity 26 NVIDIA DLSS 8K 28 GDDR6X Memory 30 RTX IO 32 Introducing NVIDIA RTX IO 33 How NVIDIA RTX IO Works 34 Display and Video Engine 38 DisplayPort 1.4a with DSC 1.2a 38 HDMI 2.1 with DSC 1.2a 38 Fifth Generation NVDEC - Hardware-Accelerated Video Decoding 39 AV1 Hardware Decode 40 Seventh Generation NVENC - Hardware-Accelerated Video Encoding 40 NVIDIA Ampere GA102 GPU Architecture ii Conclusion 42 Appendix A - Additional GeForce GA10x GPU Specifications 44 GeForce RTX 3090 44 GeForce RTX 3070 46 Appendix B - New Memory Error Detection and Replay (EDR) Technology 49 Appendix C - RTX A6000 GPU Perf ormance 50 List of Figures Figure 1.
    [Show full text]
  • Passive Millimeter Wave Simulation in Blender
    PASSIVE MILLIMETER WAVE SIMULATION IN BLENDER by Maciej Murakowski A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering Fall 2014 c 2014 Maciej Murakowski ? Some Rights Reserved CC-BY-3.0 UMI Number: 1585170 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 1585170 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 PASSIVE MILLIMETER WAVE SIMULATION IN BLENDER by Maciej Murakowski Approved: Dennis W. Prather, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: Kenneth E. Barner, Ph.D. Chair of the Department of Electrical and Computer Engineering Approved: Babatunde Ogunnaike, Ph.D. Dean of the College of Engineering Approved: James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I would first of all like to thank my family for their love and support, both during this writing of this thesis and throughout my life. I am also grateful to my friends for keeping me sane while taking crazy hours and cancelled plans in stride.
    [Show full text]
  • Massively Parallel Ray Tracing Algorithm Using GPU
    Massively Parallel Ray Tracing Algorithm Using GPU Yutong Qin∗z, Jianbiao Linyz, Xiang Huang∗x Department of Computer Science and Engineering Sichuan Unversity, Jinjiang College, Pengshan, Sichuan, 620860, China ∗[email protected] [email protected] Abstract—Ray tracing is a technique for generating an image split into a large number of much smaller cores and each core by tracing the path of light through pixels in an image plane is an in-order, heavily multi-threaded, single-instruction issue and simulating the effects of high-quality global illumination at processor that shares its control and instruction cache with a heavy computational cost. Because of the high computation complexity, it can’t reach the requirement of real-time rendering. other cores. So data-intensive applications can easily harness The emergence of many-core architectures, makes it possible to the potential power of GPUs. Because there are a large number reduce significantly the running time of ray tracing algorithm by of calculation in ray tracing algorithm, for example, traverse, employing the powerful ability of floating point computation. In circulation and intersection, all of these calculation can be this paper, a new GPU implementation and optimization of the decomposed into independent subtasks to execute in parallel. ray tracing to accelerate the rendering process is presented. Index Terms—Radiosity GPU OpenCL Ray Tracing It is not difficult to imagine how the ray tracing’s performance varies under GPU architecute. In modern software processes, the program sections often I. INTRODUCTION exhibit a rich amount of data parallelism, a property that allows Photorealistic rendering is an rendering process of the many arithmetic operations to be performed on program data reflection effects of real shadow rays.
    [Show full text]
  • Kerkythea 2007 Rendering System
    GETTING STARTED PHOTO REALISTIC RENDERS OF YOUR 3D MODELS Available for Ver. 1.01 © Kerkythea 2008 Echo Date: April 24th, 2008 GETTING STARTED Page 1 of 41 Written by: The KT Team GETTING STARTED Preface: Kerkythea is a standalone render engine, using physically accurate materials and lights, aiming for the best quality rendering in the most efficient timeframe. The target of Kerkythea is to simplify the task of quality rendering by providing the necessary tools to automate scene setup, such as staging using the GL real-time viewer, material editor, general/render settings, editors, etc., under a common interface. Reaching now the 4th year of development and gaining popularity, I want to believe that KT can now be considered among the top freeware/open source render engines and can be used for both academic and commercial purposes. In the beginning of 2008, we have a strong and rapidly growing community and a website that is more "alive" than ever! KT2008 Echo is very powerful release with a lot of improvements. Kerkythea has grown constantly over the last year, growing into a standard rendering application among architectural studios and extensively used within educational institutes. Of course there are a lot of things that can be added and improved. But we are really proud of reaching a high quality and stable application that is more than usable for commercial purposes with an amazing zero cost! Ioannis Pantazopoulos January 2008 Like the heading is saying, this is a Getting Started “step-by-step guide” and it’s designed to get you started using Kerkythea 2008 Echo.
    [Show full text]
  • Computer Graphics (CS 543) Lecture 12: Part 2 Ray Tracing (Part 1) Prof
    Computer Graphics (CS 543) Lecture 12: Part 2 Ray Tracing (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Raytracing Global illumination‐based rendering method Simulates rays of light, natural lighting effects Because light path is traced, handles effects tough for openGL: Shadows Multiple inter‐reflections Transparency Refraction Texture mapping Newer variations… e.g. photon mapping (caustics, participating media, smoke) Note: raytracing can be semester graduate course Today: start with high‐level description Raytracing Uses Entertainment (movies, commercials) Games (pre‐production) Simulation (e.g. military) Image: Internet Ray Tracing Contest Winner (April 2003) How Raytracing Works OpenGL is object space rendering start from world objects, rasterize them Ray tracing is image space method Start from pixel, what do you see through this pixel? Looks through each pixel (e.g. 640 x 480) Determines what eye sees through pixel Basic idea: Trace light rays: eye ‐> pixel (image plane) ‐> scene If a ray intersect any scene object in this direction Yes? render pixel using object color No? it uses the background color Automatically solves hidden surface removal problem Case A: Ray misses all objects Case B: Ray hits an object Case B: Ray hits an object . Ray hits object: Check if hit point is in shadow, build secondary ray (shadow ray) towards light sources. Case B: Ray hits an object .If shadow ray hits another object before light source: first intersection point is in shadow of the second object. Otherwise, collect light contributions Case B: Ray hits an object .First Intersection point in the shadow of the second object is the shadow area.
    [Show full text]