Review of Classical Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Review of Classical Mechanics CHAPTER 1 REVIEW OF CLASSICAL MECHANICS Newton’s laws of motion provide the starting point for all of the physics that is discussed in this text. This brief review of elementary classical mechanics discusses those laws, and the useful conservation theorems that follow from them. 1.1 NEWTON’S LAWS OF MOTION I: A body remains at rest or in uniform motion unless acted upon by a force. In other words, its velocity is constant when the force on that body is F =0. II: Abodyacteduponbyaforcemovessuchthatthetimerateof changeofitsmomentum equals that force, namely, p˙ = F, where p = m˙r is the body’s linear momentum , m its mass, r its position vector, and its velocity ˙r = dr/dt where the derivative is with respect to time t. This is the familiar F = m¨r law. III: If two bodies exert forces on each other, those forces are equal in magnitude and opposite in direction. Thus if F12 is the force on particle 1 that is exerted by particle 2, then F21 = F12. − 1.2 REFERENCE FRAMES AND COORDINATE SYSTEMS A reference frame is the coordinate grid that that is used to measure all particles’ positions and velocities. Newton’s laws are valid in an inertial reference frame, and law I indicates that an inertial reference frame is one that is stationary or moving with a constant velocity. 1 2 REVIEW OF CLASSICAL MECHANICS Figure 1.1 Position vector r for a particle at point P. Note that the unit vectors ˆr and θˆ lie in the ˆx–ˆy plane. Cartesian andcylindricalcoordinatesystems will be used in this text. In those coordinate systems, the position vector for particle at point P is (see Fig. 1.1) r = xˆx + yˆy + zˆz inCartesiancoordinates (1.1) = rˆr + zˆz in cylindrical coordinates. (1.2) In this cylindrical coordinate system, the unit vector ˆr is always confined to the ˆx–ˆy plane. Note also the distinction in the lengths r = x2 + y2 and r = x2 + y2 + z2. In these coordinate systems, the particle’s velocity is | | p p dr ˙r = =x ˙ ˆx +y ˙ˆy +z ˙ˆz =r ˙ˆr + rθ˙θˆ+z ˙ˆz, (1.3) dt and its acceleration is d2r 1 d ¨r = =x ¨ˆx +¨yˆy +¨zˆz = (¨r rθ˙2)ˆr + (r2θ˙)θˆ+¨zˆz. (1.4) dt2 − r dt 1.3 LINEAR AND ANGULAR MOMENTA Law II indicates that a particle’s linear momentum p = m˙r is conserved (i.e., a constant) when the total force on it is zero. That particle’s angular momentum is L = r p = mr ˙r, and rate at which L varies is the the torque on that particle, T = dL×/dt = m(˙r× ˙r + r ¨r) = r F. When the net torque on that particle is zero, its angular momentum× is× conserved.× 1.4 WORK AND ENERGY Suppose force F displaces a particle a small differential distance dr′ during a short time interval dt; see Fig. 1.2. The small amountof work that that force performs on that particle WORK AND ENERGY 3 Figure 1.2 A particle is displaced from r0 to r1 by force F along three possible paths. The work r done on the particle is = 1 F · dr′, and if is independent of the choice of path ( or ), W Rr0 W a,b, c then the force is said to be conservative. is dW = F dr′, so the total work done on that particle as that force drives the particle · from position r0 to r1 is the sum of all the contributions dW along that path, which is r1 W = F dr′. (1.5) r · Z 0 Note also that dr 1 d 1 d(v2) dW = m¨r dr = m¨r dt = m¨r ˙rdt = m (˙r ˙r)= m , (1.6) · · dt · 2 dt · 2 dt where v2 = ˙r ˙r is the square of the particle’s velocity. The total work that F must do to · drive the particle from r0 r1 is then → r1 1 2 1 2 2 W = m d(v )= m(v1 v0 )= T1 T0, (1.7) 2 r 2 − − Z 0 1 2 where Ti = 2 mvi is the particle’s kinetic energy when at position ri. Thus the work done on the particle is simply its change in kinetic energy. Also note that the rate at which force F does work on the particle is dW P = = m¨r ˙r, (1.8) dt · which is also known as the power delivered to that particle by force F. The work done on the particle by force F is also related to changes in its potentialenergy U. This text is largely concerned with conservative forces, and a conservative force is one where the work W performed on a particle is independent of the particular path that takes 4 REVIEW OF CLASSICAL MECHANICS the particle from r0 to r1 ; see Fig. 1.2 When that is the case, then the vector force F can always be written as the gradient of a scalar U(r) that is a function of position r only: F = U, (1.9) −∇ where U is the system’s potential energy. The gradient of U in Cartesian and cylindrical coordinates is ∂U ∂U ∂U U = ˆx + ˆy + ˆz ∂x ∂y ∂z ∇ (1.10) ∂U 1 ∂U ∂U = ˆr + θˆ+ ˆz ∂r r ∂θ ∂z So for example, the component of force along the ˆx axis is Fx = ∂U/∂x, while the azimuthal force is F = (∂U/∂θ)/r. Then the work, Eqn. (1.5), becomes− θ − r1 W = U dr, (1.11) − r ∇ · Z 0 where U(r) is a function of the particle’s trajectory r(t), which is the path traced by the particle over time. Next, use the chain rule to calculate dU/dt in a Cartesian coordinate system: dU ∂U dx ∂U dy ∂U dz = + + = ( U) ˙r. (1.12) dt ∂x dt ∂y dt ∂z dt ∇ · Thus dU = ( U) dr is the small change in the particle’s potential energy that occurs as it advances a∇ small· distance dr along its trajectory during the short time interval dt. The work done on the particle can now be written as r1 W = dU = (U1 U0) (1.13) − r − − Z 0 where Ui = U(ri) is the potential energy of the particle when it is at position ri. Thus the work done on the particle is also 1 times its change in potential energy. And since − W = T1 T0 = (U1 U0), this means that the particle’s energy at the endpoints of the − − − trajectory, E1 = T1 + U1 = T0 + U0 = E0, is a constant, which tells us that the particle’s energy E = T + U is conserved, provided of course that the force acting on the particle is conservative. Conservative systems are frictionless (i.e.. have no velocity–dependent forces), and any external forces, if present, do not have any time dependence. 1.4.1 potential energy, and the potential According to Eqns. (1.5) and (1.13), the system’s potential energy U(r) is 1 the work − × done on the particle as it is moved from the reference position r0 to its present position r, so r U(r)= W = F(r′) dr′, (1.14) − − r · Z 0 where r′ is a dummy variable that runs along the integration path (see Fig. 1.2). Note also that the unimportant constant U0 has been dropped from the above, which means that the system’s energy scale has been calibrated such that U(r0)=0. WORK AND ENERGY 5 Figure 1.3 Two gravitating particles, one of mass m at r, and the other of mass M at rM . The lower figure illustrates how this system’s potential energy U is calculated at particle m is drawn from the reference site r0 to its final position at r. EXAMPLE 1.1 To illustrate the calculation of U, consider a simple gravitating two–particle system. The field particle, which is the particle of interest, has a mass m and a position vector r, and it is free to move about the system, while the source mass M, which is the source of the force that disturbs m, remains at a fixed position rM . According to Newton’s law of gravity, the force on m due to M is GMm(r r ) F = − M , (1.15) − r r 3 | − M | and this force law is written so that it is evident that force F draws the field mass m towards the source mass M. Put the origin on M so that rM = 0, and recall that U is 1 the work done on the particle as M’s force delivers particle m from − × the reference site r0 to its present position r. Thus the force on m when it is at an 2 intermediate distance r′ = r rM away from M is F = (GMm/r′ )ˆr where ˆr is the usual unit radial vector;| − see the| lower part of Fig. 1.3.− The potential energy of this two–particle system is then r r GmM GmM U(r)= F(r′) dr′ = 2 dr′ = , (1.16) − r0 · r′ − r Z Z∞ where the arbitrary reference distance r0 has been set to infinity, as is required since Eqn. (1.14) has set U(r0)=0 at the reference site. 6 REVIEW OF CLASSICAL MECHANICS Figure 1.4 A Gaussian surface S surrounds a volume that contains mass m. The position vector r also points to the small area element da = ˆnda on surface S. Another useful quantity is the potential energy per unit mass, Φ(r)= U/m, also known as the system’s potential.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Non-Local Momentum Transport Parameterizations
    Non-local Momentum Transport Parameterizations Joe Tribbia NCAR.ESSL.CGD.AMP Outline • Historical view: gravity wave drag (GWD) and convective momentum transport (CMT) • GWD development -semi-linear theory -impact • CMT development -theory -impact Both parameterizations of recent vintage compared to radiation or PBL GWD CMT • 1960’s discussion by Philips, • 1972 cumulus vorticity Blumen and Bretherton damping ‘observed’ Holton • 1970’s quantification Lilly • 1976 Schneider and and momentum budget by Lindzen -Cumulus Friction Swinbank • 1980’s NASA GLAS model- • 1980’s incorporation into Helfand NWP and climate models- • 1990’s pressure term- Miller and Palmer and Gregory McFarlane Atmospheric Gravity Waves Simple gravity wave model Topographic Gravity Waves and Drag • Flow over topography generates gravity (i.e. buoyancy) waves • <u’w’> is positive in example • Power spectrum of Earth’s topography α k-2 so there is a lot of subgrid orography • Subgrid orography generating unresolved gravity waves can transport momentum vertically • Let’s parameterize this mechanism! Begin with linear wave theory Simplest model for gravity waves: with Assume w’ α ei(kx+mz-σt) gives the dispersion relation or Linear theory (cont.) Sinusoidal topography ; set σ=0. Gives linear lower BC Small scale waves k>N/U0 decay Larger scale waves k<N/U0 propagate Semi-linear Parameterization Propagating solution with upward group velocity In the hydrostatic limit The surface drag can be related to the momentum transport δh=isentropic Momentum transport invariant by displacement Eliassen-Palm. Deposited when η=U linear theory is invalid (CL, breaking) z φ=phase Gravity Wave Drag Parameterization Convective or shear instabilty begins to dissipate wave- momentum flux no longer constant Waves propagate vertically, amplitude grows as r-1/2 (energy force cons.).
    [Show full text]
  • A Brief History and Philosophy of Mechanics
    A Brief History and Philosophy of Mechanics S. A. Gadsden McMaster University, [email protected] 1. Introduction During this period, several clever inventions were created. Some of these were Archimedes screw, Hero of Mechanics is a branch of physics that deals with the Alexandria’s aeolipile (steam engine), the catapult and interaction of forces on a physical body and its trebuchet, the crossbow, pulley systems, odometer, environment. Many scholars consider the field to be a clockwork, and a rolling-element bearing (used in precursor to modern physics. The laws of mechanics Roman ships). [5] Although mechanical inventions apply to many different microscopic and macroscopic were being made at an accelerated rate, it wasn’t until objects—ranging from the motion of electrons to the after the Middle Ages when classical mechanics orbital patterns of galaxies. [1] developed. Attempting to understand the underlying principles of 3. Classical Period (1500 – 1900 AD) the universe is certainly a daunting task. It is therefore no surprise that the development of ‘idea and thought’ Classical mechanics had many contributors, although took many centuries, and bordered many different the most notable ones were Galileo, Huygens, Kepler, fields—atomism, metaphysics, religion, mathematics, Descartes and Newton. “They showed that objects and mechanics. The history of mechanics can be move according to certain rules, and these rules were divided into three main periods: antiquity, classical, and stated in the forms of laws of motion.” [1] quantum. The most famous of these laws were Newton’s Laws of 2. Period of Antiquity (800 BC – 500 AD) Motion, which accurately describe the relationships between force, velocity, and acceleration on a body.
    [Show full text]
  • 10. Collisions • Use Conservation of Momentum and Energy and The
    10. Collisions • Use conservation of momentum and energy and the center of mass to understand collisions between two objects. • During a collision, two or more objects exert a force on one another for a short time: -F(t) F(t) Before During After • It is not necessary for the objects to touch during a collision, e.g. an asteroid flied by the earth is considered a collision because its path is changed due to the gravitational attraction of the earth. One can still use conservation of momentum and energy to analyze the collision. Impulse: During a collision, the objects exert a force on one another. This force may be complicated and change with time. However, from Newton's 3rd Law, the two objects must exert an equal and opposite force on one another. F(t) t ti tf Dt From Newton'sr 2nd Law: dp r = F (t) dt r r dp = F (t)dt r r r r tf p f - pi = Dp = ò F (t)dt ti The change in the momentum is defined as the impulse of the collision. • Impulse is a vector quantity. Impulse-Linear Momentum Theorem: In a collision, the impulse on an object is equal to the change in momentum: r r J = Dp Conservation of Linear Momentum: In a system of two or more particles that are colliding, the forces that these objects exert on one another are internal forces. These internal forces cannot change the momentum of the system. Only an external force can change the momentum. The linear momentum of a closed isolated system is conserved during a collision of objects within the system.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Engineering Physics I Syllabus COURSE IDENTIFICATION Course
    Engineering Physics I Syllabus COURSE IDENTIFICATION Course Prefix/Number PHYS 104 Course Title Engineering Physics I Division Applied Science Division Program Physics Credit Hours 4 credit hours Revision Date Fall 2010 Assessment Goal per Outcome(s) 70% INSTRUCTION CLASSIFICATION Academic COURSE DESCRIPTION This course is the first semester of a calculus-based physics course primarily intended for engineering and science majors. Course work includes studying forces and motion, and the properties of matter and heat. Topics will include motion in one, two, and three dimensions, mechanical equilibrium, momentum, energy, rotational motion and dynamics, periodic motion, and conservation laws. The laboratory (taken concurrently) presents exercises that are designed to reinforce the concepts presented and discussed during the lectures. PREREQUISITES AND/OR CO-RECQUISITES MATH 150 Analytic Geometry and Calculus I The engineering student should also be proficient in algebra and trigonometry. Concurrent with Phys. 140 Engineering Physics I Laboratory COURSE TEXT *The official list of textbooks and materials for this course are found on Inside NC. • COLLEGE PHYSICS, 2nd Ed. By Giambattista, Richardson, and Richardson, McGraw-Hill, 2007. • Additionally, the student must have a scientific calculator with trigonometric functions. COURSE OUTCOMES • To understand and be able to apply the principles of classical Newtonian mechanics. • To effectively communicate classical mechanics concepts and solutions to problems, both in written English and through mathematics. • To be able to apply critical thinking and problem solving skills in the application of classical mechanics. To demonstrate successfully accomplishing the course outcomes, the student should be able to: 1) Demonstrate knowledge of physical concepts by their application in problem solving.
    [Show full text]
  • Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
    Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero.
    [Show full text]
  • Euler and the Dynamics of Rigid Bodies Sebastià Xambó Descamps
    Euler and the dynamics of rigid bodies Sebastià Xambó Descamps Abstract. After presenting in contemporary terms an outline of the kinematics and dynamics of systems of particles, with emphasis in the kinematics and dynamics of rigid bodies, we will consider briefly the main points of the historical unfolding that produced this understanding and, in particular, the decisive role played by Euler. In our presentation the main role is not played by inertial (or Galilean) observers, but rather by observers that are allowed to move in an arbitrary (smooth, non-relativistic) way. 0. Notations and conventions The material in sections 0-6 of this paper is an adaptation of parts of the Mechanics chapter of XAMBÓ-2007. The mathematical language used is rather standard. The read- er will need a basic knowledge of linear algebra, of Euclidean geometry (see, for exam- ple, XAMBÓ-2001) and of basic calculus. 0.1. If we select an origin in Euclidean 3-space , each point can be specified by a vector , where is the Euclidean vector space associated with . This sets up a one-to-one correspondence between points and vectors . The inverse map is usually denoted . Usually we will speak of “the point ”, instead of “the point ”, implying that some point has been chosen as an origin. Only when conditions on this origin become re- levant will we be more specific. From now on, as it is fitting to a mechanics context, any origin considered will be called an observer. When points are assumed to be moving with time, their movement will be assumed to be smooth.
    [Show full text]
  • THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
    GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P.
    [Show full text]
  • Fluids – Lecture 7 Notes 1
    Fluids – Lecture 7 Notes 1. Momentum Flow 2. Momentum Conservation Reading: Anderson 2.5 Momentum Flow Before we can apply the principle of momentum conservation to a fixed permeable control volume, we must first examine the effect of flow through its surface. When material flows through the surface, it carries not only mass, but momentum as well. The momentum flow can be described as −→ −→ momentum flow = (mass flow) × (momentum /mass) where the mass flow was defined earlier, and the momentum/mass is simply the velocity vector V~ . Therefore −→ momentum flow =m ˙ V~ = ρ V~ ·nˆ A V~ = ρVnA V~ where Vn = V~ ·nˆ as before. Note that while mass flow is a scalar, the momentum flow is a vector, and points in the same direction as V~ . The momentum flux vector is defined simply as the momentum flow per area. −→ momentum flux = ρVn V~ V n^ . mV . A m ρ Momentum Conservation Newton’s second law states that during a short time interval dt, the impulse of a force F~ applied to some affected mass, will produce a momentum change dP~a in that affected mass. When applied to a fixed control volume, this principle becomes F dP~ a = F~ (1) dt V . dP~ ˙ ˙ P(t) P + P~ − P~ = F~ (2) . out dt out in Pin 1 In the second equation (2), P~ is defined as the instantaneous momentum inside the control volume. P~ (t) ≡ ρ V~ dV ZZZ ˙ The P~ out is added because mass leaving the control volume carries away momentum provided ˙ by F~ , which P~ alone doesn’t account for.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]