1995 Annual Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lockheed Martin Space Systems Company NASA SBIR Overview
Lockheed Martin Space Systems Company NASA SBIR Overview and Engagement Craig Owens Program Manager, SBIR Lockheed Martin Aeronautics Space Systems Company Portfolio Special Strategic & Missile Defense Civil Space Programs NASA Human Adv Programs Strategic Missiles Missile Defense Planetary Weather & Exploration Exploration Environment Military Space Mission Solutions Protected Narrowband Navigation Weather Early Space End-to-End Geospatial Comms Comms Warning Protection Mission Systems Technologies Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments LM SBIR Team Mission 1. Collaborate with small businesses to get advanced technology to our customers 2. Build strategic, long term relationships with small businesses by leveraging Gov’t SBIR/STTR R&D funding 3. Understand what small business technologies are potentially coming to the market 4. Align discriminating small business technologies to LM programs and future opportunities to reduce cost and win new business 5. Complement our small business supply chain and support the Gov’t initiative to leverage small businesses © 2016 Lockheed Martin Corporation, All Rights Reserved LM SBIR Engagement • Strong engagement in the SBIR/STTR Program – Seeking technology maturation supporting program needs – 5-10 year outlook – TRL 6 needed for potential LM investment – Expect small businesses to be informed on LM • Benefits to LM – Innovation & Affordability – Strategic partnerships – Complements LM investments – Help drive innovation into next generation systems © 2016 Lockheed Martin Corporation, All Rights Reserved LMSSC Endorsement Process • LM SME’s assess all concepts • Leadership aware of engagements • Process allows for relationship building © 2016 Lockheed Martin Corporation, All Rights Reserved 5 6. -
H. Con. Res. 122
IV 115TH CONGRESS 2D SESSION H. CON. RES. 122 Commemorating the 75th Anniversary of Lockheed Martin Skunk Works and its significant contributions to the national security of the United States. IN THE HOUSE OF REPRESENTATIVES JUNE 7, 2018 Mr. KNIGHT (for himself and Mr. COOK) submitted the following concurrent resolution; which was referred to the Committee on Armed Services CONCURRENT RESOLUTION Commemorating the 75th Anniversary of Lockheed Martin Skunk Works and its significant contributions to the national security of the United States. Whereas Lockheed Martin is known for building many of the finest military aircraft in the world; Whereas the Palmdale, California, location of Lockheed Mar- tin is headquarters to the Advanced Development Pro- grams group of the company, which is widely known as the ‘‘Skunk Works’’; Whereas the name the ‘‘Skunk Works’’— (1) came from ‘‘Li’l Abner’’, a satirical comic strip by Al Capp that was immensely popular in the 1940s and 1950s; (2) in 1943, was first used in reference to the Ad- vanced Development Programs group when the Depart- VerDate Sep 11 2014 02:15 Jun 08, 2018 Jkt 079200 PO 00000 Frm 00001 Fmt 6652 Sfmt 6300 E:\BILLS\HC122.IH HC122 dlhill on DSK3GLQ082PROD with BILLS 2 ment of the Navy attempted to establish a conference call connection and was mistakenly transferred to the XP–80 program of the Advanced Development Programs group, which due to classification could not be identified when the call was answered, and a member of the Advanced Development Programs group instead answered the call by saying, ‘‘Skunk Works’’, in reference to the location of the facility next to a malodorous plastics factory in Burbank, California; and (3) would later become the name that is used for the Advanced Development Programs group today, the ‘‘Skunk Works’’; Whereas the founding father of the Skunk Works was Clar- ence L. -
2018 Annual Report Our Leadership Team (From Left to Right): Frank A
FINANCIAL HIGHLIGHTS In millions, except per share data 2018 2017 2016 Net Sales $53,762 $49,960 $47,290 Segment Operating Profit 5,877 5,092 4,982 Consolidated Operating Profit 7,334 6,744 5,888 Net Earnings From Continuing Operations 5,046 1,890 3,661 Net Earnings 5,046 1,963 5,173 Diluted Earnings Per Common Share Continuing Operations 17.59 6.50 12.08 Net Earnings 17.59 6.75 17.07 Cash Dividends Per Common Share 8.20 7.46 6.77 Average Diluted Common Shares Outstanding 287 291 303 Cash and Cash Equivalents $772$ 2,861 $ 1,837 Total Assets 44,876 46,620 47,560 Total Debt, net 14,104 14,263 14,282 Total Equity (Deficit) 1,449 (776) 1,477 Common Shares Outstanding at Year-End 281 284 289 Net Cash Provided by Operating Activities $3,138 $ 6,476 $ 5,189 NOTE: For additional information regarding the amounts presented above, see the Form 10-K portion of this Annual Report. A reconciliation of Segment Operating Profit to Consolidated Operating Profit is included on the page preceding the back cover of this Annual Report. On the Cover: F-35B Lightning II On September 29, 2018, the first F-35B Lightning II stealth fighters landed on the flight deck of HMS Queen Elizabeth, as Britain’s newest Royal Navy aircraft carrier conducted trials off the Eastern Seaboard of the United States. These developmental trials included more than 500 take-offs and landings from the warship over an 11-week period. The F-35B is one of three variants of the world’s most advanced supersonic fifth-generation fighter jet. -
Lockheed Martin Space Advanced Programs
Lockheed Martin Space Advanced Programs Requirements in NASA Science Missions © 2019 Lockheed Martin. All Rights Reserved Performance and Operational Measurement Requirements Emitted radiance Detect photons; Convert to e- Calibrate Data Science Data Quantized Photons Electrons Science Data Radiances § Orbit § Wavelength band § Detection § Science question § Signal photons § Integration time § Navigation analysis § Background scene § Quantum efficiency § Radiometric calibration § Field of View § Dark current § Resolution § Read noise § Solar intrusion Mission Requirements Performance Requirements • Duration • Environment • Electrical • Mechanical Iterate • Reliability • Operational • Thermal • Structural Evolve Requirements Constraints Resource Requirements • Spacecraft • Mass • Thermal interface • Power • Data rate • Launch vehicle • Size • Alignment Concept Design 2 Example Requirements Tree Implementing NASA Level 1s Institution/NASA Center Level 1 Reqts Program Level 2 Launch Environmental Mission Assurance Mission Reqts Doc Project Vehicle IRD Reqts Requirements (MAR) Flight System Level 3 Mission Ops & Element- Payload Spacecraft Flight to Ground Payload Reqts to SC ICDs Ground Developed, Requirements Doc ICD System Reqts Project Approved Payload/ Level 4 Spacecraft Ground Instrument Testbeds Element-Controlled Subsystems Subsystems Subsystems 3 Mars Atmosphere and Volatile EvolutioN (MAVEN) v Objective: Characterize Mars’ atmospheric escape v PI: Dr. Bruce Jakosky, CU LASP v Implementing Institution: NASA Goddard Space Flight Center v Spacecraft and Mission Ops: Lockheed Martin v Instruments: UCB SSL, CU/LASP, NASA GSFC, CNES v Mars relay: Jet Propulsion Laboratory v Launched November 18th 2013 v MOI September 22nd 2014 v Currently in third mission extension Image Credit: NASA/B. Ingalls 5 Science Missions Across the Solar System 6 © 2019 Lockheed Martin. All Rights Reserved. -
Aerospace-Facts-And-Figures-1988
Facts and Figures 8 8 8 9 Key Technologies Legacy for the 21st Century Aerospace Industries Association of America, Inc. $16.95 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1250 Eye Street, N.W., Washington , D.C. 20005 (202) 371 -8400 Director , Research Center: Virginia C. Lopez Manager, Economic Data Servi ce: Carl M. P ~ s ale Ed itorial onsultant: Jam s 1. Hagg rty De~ign : wen Hoelscher and Associates Published by Aviation Week 1221 Avenue of the Americas New York, N.Y. 10020 1-800-433-0880 Copyright © 19tl!l by Aerospace Industries A ss ociution u f i\mericu. Inc . Library o f Congre ss utalog N<> . 46-25 007 Ackno-wledgments Air Transport Association of America Battelle Memorial Institute Council of Economic Advisers Export-Import Bank of the United States Exxon International Company General Aviation Manufacturers Association Helicopter Association International International Air Transport Association International Civil Aviation Organization McGraw-Hill Publications Company National Aeronautics and Space Administration National Science Foundation Office of Management and Budget Price Waterhouse U.S. Departments of Commerce (Bureau of the Census, Bureau of Economic Analysis, International Trade Administration) Defense (Comptroller; Directorate for Information, Operations and Reports: Army, Navy, Air Force) Labor (Bureau of Labor Statistics) Transportation (Federal Aviation Administration) Focused development of key "enabling" technologies will determine the U.S. aerosp~ce. industry's technological and market leadership mto the next century. These technologies will help ensure U.S. defense superiority and will also provide endless possibilities for a range of products to revolutionize the way we live-from fully-automated factories to crash-resistant, ultra safe automobiles to greatly improved medical diagnostic equipment. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998. -
Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S
5 Years Later Shades of Blue Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S. 2014) Heritage High School (Class of 2008) A LITTLE ABOUT ME › Born June 11th 1990 in Englewood CO › K-12 (Littleton Public Schools) – Runyon Elementary – Powell Middle School – Heritage High School › Clubs and Activities – Littleton Rotary/Interact Club – Destination Imagination – Club Inline Hockey – Varsity Lacrosse – Yearbook (Sports Editor) – National Honor Society MR. WARREN › Math teacher at Heritage H.S. – Advanced Algebra and Calculus › Key Lessons – “Use your imagination” – “Be creative” – “Think outside the box” › I chose to major in aerospace engineering my senior year THE LAST FIVE YEARS › University of Colorado at Boulder › Bachelors in Aerospace Engineering Sciences (ASEN) in May 2013 › Masters in ASEN/Structures and Materials in May 2014 • Clubs and Activities • Student Leadership Council • Student Success Center • Men’s Club Lacrosse • Zeta Beta Tau Fraternity WHAT IS ENGINEERING? SCIENCE IS THE WHAT/WHY ENGINEERING IS THE HOW Karman vortex sheet: repeating swirling vortices Boundary layer injection: injecting fluid into the caused by unsteady separation of flow of a fluid airstream to create turbulence such that more lift around blunt bodies. is generated along the wing. More lift means less fuel. Less fuel means more efficient airplanes. AEROSPACE ENGINEERING IS A BROAD FIELD AERONAUTICS ASTRODYNAMICS LAUNCH VEHICLES • Aircraft technologies • Spacecraft • Space Shuttle • Military and civilian technologies -
Sector Fact Sheet
Ottawa Engage our Aerospace, Canada’s Capital Defence and Security Ottawa is a global hub for fundamental and Sector applied research, ground-breaking Ottawa has more than 300 companies innovations, and disruptive products and actively engaged in aerospace, defence services that are in demand across the and security – from smaller, niche, globe. As the seat of the Federal companies, to multinational giants government, Ottawa is home to federal including Lockheed-Martin, General departments and agencies, more than 65 Dynamics, Thales and Raytheon. This research labs and over 130 embassies and diverse sector offers expertise in C4ISR, consulates. With a deep history of innovation robotics, unmanned aerial vehicles, high that spans over 100 years, today’s present- performance cybersecurity solutions, day technology ecosystem is driving personal protection, interoperable research in emerging fields such as technologies for first responders and autonomous vehicles, artificial intelligence, military end-users, CBRNE protection, cybersecurity and precision agriculture. This maintenance and monitoring, sub-systems dynamic and urban city is surrounding by an and support. As the home to the abundance of natural beauty that offers an Department of National Defence, affordable and unparalleled quality of life. Canadian Security and Intelligence Service, Public Safety Canada, Canadian Air Transport Security Authority, Royal National Canadian Mounted Police, Capital Region Communications Security Establishment Population 1,324,000 Canada and Canada -
Beyond the Paths of Heaven the Emergence of Space Power Thought
Beyond the Paths of Heaven The Emergence of Space Power Thought A Comprehensive Anthology of Space-Related Master’s Research Produced by the School of Advanced Airpower Studies Edited by Bruce M. DeBlois, Colonel, USAF Professor of Air and Space Technology Air University Press Maxwell Air Force Base, Alabama September 1999 Library of Congress Cataloging-in-Publication Data Beyond the paths of heaven : the emergence of space power thought : a comprehensive anthology of space-related master’s research / edited by Bruce M. DeBlois. p. cm. Includes bibliographical references and index. 1. Astronautics, Military. 2. Astronautics, Military—United States. 3. Space Warfare. 4. Air University (U.S.). Air Command and Staff College. School of Advanced Airpower Studies- -Dissertations. I. Deblois, Bruce M., 1957- UG1520.B48 1999 99-35729 358’ .8—dc21 CIP ISBN 1-58566-067-1 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited. ii Contents Chapter Page DISCLAIMER . ii OVERVIEW . ix PART I Space Organization, Doctrine, and Architecture 1 An Aerospace Strategy for an Aerospace Nation . 3 Stephen E. Wright 2 After the Gulf War: Balancing Space Power’s Development . 63 Frank Gallegos 3 Blueprints for the Future: Comparing National Security Space Architectures . 103 Christian C. Daehnick PART II Sanctuary/Survivability Perspectives 4 Safe Heavens: Military Strategy and Space Sanctuary . 185 David W. Ziegler PART III Space Control Perspectives 5 Counterspace Operations for Information Dominance . -
“Keep the Dream Alive”
February 28, 2015 The 60th Annual Honors and Awards Banquet “Keep the Dream Alive” February 28, 2015 th 60 Honors & Awards Banquet Diamond Anniversary 1 The 60th Annual Honors and Awards Banquet February 28, 2015 National Engineers Week Committees ~ BANQUET COMMITTEE ~ Kenneth Davis, Sonja Domazet, Stephen Guine, William Johnson, Sharlene Katz, Paul Landry, Robert Tarn, Thomas R. Tarn, Charles Volk ~ HONORS & AWARDS COMMITTEE ~ Marek Barylak, Kenneth Davis, Stephen Guine, Sharlene Katz, Paul Landry, Charles Olsefsky, R. Freeman Straub, Robert B. Tarn ~ AWARDS ASSEMBLY ~ Ken Davis, Sonja Domazet, James Flynn, Bill Johnson, Sharlene Katz, Charles Olsefsky ~ HOST / HOSTESSES ~ Olivia Landry, Maria Tarn ~ SOUVENIR PROGRAM GRAPHICS & DESIGN ~ Paul Landry ~ AWARD GRAPHICS ~ Mike Matte ~ AUDIO / VIDEO ~ Swank Audio Visuals, Carlos Guerra ~ BANQUET SETUP / AWARDS DISTRIBUTION ~ Marissa Bayless, Margo Guerra ~ MATH COUNTS ~ Jerry Kraim, Eli Stiny Engineers’ Council Past Presidents 1970 William B. Johnson 1992 Robert Budica 2005 Robert B. Tarn 1980 Clifford B. Shiepe, PE 1993 Lloyd W. Higginbotham, FIAE 2006 Paul F. Landry 1981 Clifford B. Shiepe, PE 1994 Lloyd W. Higginbotham, FIAE 2007 Paul F. Landry 1982 Lloyd W. Higginbotham, FIAE 1995 Lloyd W. Higginbotham, FIAE 2008 Patrick Berbon 1983 William F. Hassel, PE, FIAE 1996 Lloyd W. Higginbotham, FIAE 2009 Dr. Charles H. Volk 1984 Clifford Terry 1997 Lloyd W. Higginbotham, FIAE 2010 Dr. Charles H. Volk 1985 Roland V. Roggero 1998 Lloyd W. Higginbotham, FIAE 2011 Kenneth G. Davis 1986 James P. Ritchey 1999 Lloyd W. Higginbotham, FIAE 2012 Kenneth G. Davis 1987 James P. Ritchey 2000 Lloyd W. Higginbotham, FIAE 2013 Sonja Domazet 1988 Harlan L. Russ 2001 Lloyd W. -
Northrop F-5 E/F, CF-5D
Northrop F-5 E/F, CF-5D Description The F-5E is a single seat, twin-engine, tactical fighter and attack aircraft. providing simulated air-to-air combat training, close-air support training, tactics development and evaluation support, manufactured by Northrop Grumman Corporation. The F-5F is a dual-seat version, twin-engine, tactical fighter commonly used for training and adversary combat tactics. The aircraft can ably serve in an aggressor training role with simulation capability of current threat aircraft in fighter combat mode. The CF-FD is the dual-seat Canadian version of the F-5 modified to fit specific Canadian requirements. Fleet TacAir owns and operates a fleet of 26 supersonic F-5 fighter aircraft, largely consisting of an improved, lower flight-time version of the current Adversary platform of the U.S. Navy (USN) and Marine Corps (USMC). TacAir has operated F-5 aircraft since 2013. The F-5 is a proven Adversary aircraft also formerly used by the USAF in this role and currently operational with 19 international air forces. While the baseline F-5 flown by USN/USMC is widely considered a 3rd Generation aircraft, TacAir’s existing and planned upgrades economically evolve this aircraft into an advanced tactical aircraft with sensor/system capabilities on par with current DoD 4th Generation fighter aircraft. TacAir F-5s are upgraded with HUD/HOTAS, open architecture mission computers and tailored Operational Flight Programs that enable integration of advanced radar systems, IRSTS, EA, RWR, datalinks, and HOBS simulated weapons employment. TheF-5’s proven growth potential and twin engine reliability, paired with our uncompromising corporate safety culture, is the best insurance against hazards and mishaps, and lets us meet almost any potential performance requirements.