Yellow Centaury Cicendia Filiformis Yellow Centaury Is a Member of the Gentian Family (Gentianaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Yellow Centaury Cicendia Filiformis Yellow Centaury Is a Member of the Gentian Family (Gentianaceae) Species fact sheet Yellow Centaury Cicendia filiformis Yellow centaury is a member of the gentian family (Gentianaceae). It is a tiny slender plant 2-12 cm in height with a few fleshy pinkish-green stems and linear leaves 2-6 mm long. The terminal flowers only open in the sun, revealing the four yellow petals (often tinged pink). © Hans Hillewaert under Creative Commons BY-SA licence Lifecycle Yellow centaury is a short-lived spring germinating annual flowering in August and September. Seeds require sparsely vegetated or bare ground to germinate and plants are often present around the edge of temporary autumn/winter pools, and can be found in the draw-down zone around the edges during the summer. Habitat It is found around seasonally-flooded pools, along rutted trackways and on scrapes on wet grass heath with sandy or peaty soils. More rarely, it is also present in tightly grazed seasonally-damp acid grassland and serpentine erosion pans, woodland rides, dune slacks and on coastal cliffs. The key element is the open nature of habitat with reduced competition allowing this tiny annual to complete its life cycle. Distribution In England, in recent years this native species has been restricted to heathland areas in Cornwall, Devon, Dorset, the New Forest and the Sussex Weald. It is now extremely rare in both Devon and Sussex and rapidly declining in Cornwall and Dorset. The key areas for this Yellow centaury distribution across plant are the Lizard Peninsula and New Forest where it Britain and Ireland is still widespread. It is also present in Wales on the The data used to create these maps has St David’s Peninsula’s grass heath commons and in been provided under licence from the south west Ireland. Some new populations of yellow Botanical Society of Britain and Ireland centaury have recently been discovered in south- (BSBI) and accessed from the Society’s online distribution database. west England and Ireland off-setting some localised population losses. Yellow Centaury Species Cicendia filiformis fact sheet Habitat management for yellow centaury GB Status and rarity Yellow centaury is reliant on reduced competition with other plants, Yellow centaury is classified as which is created by winter flooding, grazing and disturbance. Lack ‘Nationally Scarce’ (recorded in 16-100 of management, in particular under-grazing resulting in ranker hectads in Great Britain) and classified vegetation and scrub encroachment, will threaten the survival of this as ‘Vulnerable’ in The Vascular Plant Red plant. Conservation should focus on reinstating extensive grazing to Data List for Great Britain 2005 because wet heathland sites where the species occurs or formerly occurred, of a significant decline in its area of occupancy. It is considered to be a good combined with restoration and re-use of infrastructure features such as indicator species of habitat quality of seasonally-flooded pools and trackways. lowland acid grassland and heathland mosaics and tends to occur with a variety Conservation work to remove scrub along two adjacent trackways of other scarce and declining plants on the Lizard Peninsula in Cornwall resulted in the re-appearance of including three-lobed water-crowfoot yellow centaury from buried seed. In 2011, these restored populations Ranunculus tripartitus, chaffweed numbered over 4000 plants. Vehicle movements creating ruts on Dowrog Anagallis minima, allseed Radiola Common in Pembrokeshire have also increased the habitat for this plant linoides and pillwort Pilularia globulifera. where access tracks have been used to facilitate management of the commons. Bare soil is maintained through cattle and pony grazing. Reasons for decline Historically many sites were lost due to heathland reclamation and drainage, Work should be targeted around or adjacent to surviving populations though more recently cessation of grazing, or at historical sites where yellow centaury is no longer present as the infilling of ephemeral water bodies and seed does have some longevity and may germinate once it is exposed upgrading of muddy trackways with following conservation works. hardcore have posed greater threats. For example, during the 1980s at least two key trackway systems on the Lizard were in-filled with hardcore to improve public Vehicle movements can create ruts which also help increase the habitat for this plant. access removing the temporary pools utilised by yellow centaury. Protection under the law This plant is included as a species “of principal importance for the purpose of conserving biodiversity” under Section 41 (England) of the Natural Environment and Rural Communities Act 2006. Survey method Individual plants are easily identifiable around temporary pools and a census should be undertaken. Where a large number of plants are present around a particular pool the population can be estimated. Like other annuals of this type, populations can fluctuate greatly from year to year with thousands of plants one season and none in some years with less favourable conditions. A single season’s data is therefore unlikely to be sufficient to © Lauren Tucker judge the health of a population. 14 Rollestone Street, Salisbury, Wiltshire, SP1 1DX. UK Tel: 01722 342730 [email protected] Funded by Natural England Speaking out for wild plants www.plantlife.org.uk Plantlife International - The Wild Plant Conservation Charity is a charitable company limited by guarantee. Registered in England and Wales, Charity Number: 1059559 Registered in Scotland, Charity Number: SC038951 Registered Company Number: 3166339. Registered in England and Wales..
Recommended publications
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • LACON: Lake Assessment for Conservation Version 1 Manual
    Scottish Natural Heritage Archive Report No. 175 LACON: Lake Assessment for Conservation Version 1 Manual ARCHIVE REPORT Archive Report No. 175 LACON: Lake Assessment for Conservation Version 1 Manual For further information on this report please contact: Alison Lee Scottish Natural Heritage Silvan House 231 Corstorphine Road EDINBURGH EH12 7AT Telephone: 0131 316 2620 E-mail: [email protected] This report should be quoted as: Palmer, M.A. 2008. LACON: Lake Assessment for Conservation – Version 1 Manual. Scottish Natural Heritage Archive Report No. 175. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2019. Archive Reports Scottish Natural Heritage is committed to making the findings of all of its research publicly available whenever possible. In the past, a number of reports from staff and contractors were produced as paper documents and lodged in the SNH library or file systems. Some related to Site Condition Monitoring, others covered a range of subjects. These were not published as Research Reports for a number of reasons. In order to make these reports more available, we have decided to publish them online under the series title of Archive Reports. These will be numbered consecutively in the order that they are prepared for web publication. Their publication date, authors and title will be recorded as presented in the original report. The Archive Reports will be published as scanned PDF files of the original reports.
    [Show full text]
  • THE IRISH RED DATA BOOK 1 Vascular Plants
    THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]
  • Centaurium Muehlenbergii
    Stewardship Account for Muhlenberg’s Centaury Centaurium muehlenbergii Prepared by Wynne Miles for the BC Conservation Data Centre and the Garry Oak Ecosystems Recovery Team March 2002 Funding provided by the Habitat Stewardship Program of the Government of Canada and the Nature Conservancy of Canada STEWARDSHIP ACCOUNT - Centaurium muehlenbergii 1. Species Information a) Name: Scientific: Centaurium muehlenbergii (Griseb.) Wight ex Piper Synonyms: C. curvistamineum (Wittr.) Abrams and C. floribundum (Benth.) B.L. Rob. (Missouri Botanical Gardens - W3TROPICOS November 2001; ITIS November 2001) Kartesz (1994) does not list C. floribundum as a synonym. English name: Muhlenberg’s centaury; The name Centaurium is from the greek word kentaurous, referring to the centaur Chiron who supposedly discovered the medicinal properties of the genus (Hitchcock et al. 1969). Family: Gentianaceae - Gentian Family b) Classification: Centaurium is generally considered to be a taxonomically difficult genus (Cronquist et al. 1984; Hickman 1993; Holmes & Wivagg 1996; Mansion, pers. com., 2001; Pringle, pers. com.; 2001, Turner 1993) and further work is needed to clarify the taxonomic status of the species within this genus. Dr. Pringle suggests that the name C. muehlenbergii has been misapplied to C. exaltatum, C. tenuiflorum, C. davyi, C. erythraea, C. pulchellum, and possibly three or four other species. Similarly he feels the synonym C. floribundum has often been applied to North American specimens of the naturalized C. tenuiflorum (Pringle, pers. com., 2001). Guilhem Mansion is currently studying the molecular systematics of the genus Centaurium on a worldwide basis. His preliminary results suggest it would be useful to recognize a ‘Centaurium muehlenbergii complex’ which includes C.
    [Show full text]
  • Pilularia Globulifera
    Pilularia globulifera Status UK Biodiversity Action Plan Priority species. Nationally Scarce. IUCN Threat category: near threatened (2005). Taxonomy Pteropsida: Marsileaceae Scientific name: Pilularia globulifera L. Common names: Pills Pillwort, Pelenllys A small rhizomatous fern, Pilularia globulifera is the only member of the family in Britain. Biology & Distribution It grows on silty mud by edges of lakes, ponds, reservoirs or slow-flowing rivers and sometimes in open, damp mineral workings. It can be submerged for part of the year, or can grow as a submerged aquatic, and occasionally occurs as a free-floating aquatic. It requires areas where competition is reduced by fluctuating water levels or disturbance. Scattered throughout most of British Isles but much less common than formerly (Preston et al. 2002). It is now frequent only in parts of Ireland, central southern England and parts of Wales (Anglesey, Pembrokeshire, Powys and the mawn pools of Radnorshire). It was lost from many sites before 1930 due to habitat destruction. Eutrophication and reduced disturbance Young shoots have led to further losses. In the west, many new sites curled have been found since 1980. It has been re-introduced Figure 1. Pilularia globulifera (from J. E. Smith & J. Sowerby to some former native sites (e.g. Rhum, Scotland). (1852). English Botany. London). Identification & Field survey Pilularia is instantly distinguished from all other ferns In the field, Pilularia is often a bright yellowish-green and plants by the young leaves and shoot apices which allows it to be picked out from other aquatics being curled at their apex like a shepherd’s crook, (Eleogiton fluitans is of similar colour but lacks the not straight.
    [Show full text]
  • Structure and Function of Spores in the Aquatic Heterosporous Fern Family Marsileaceae
    Int. J. Plant Sci. 163(4):485–505. 2002. ᭧ 2002 by The University of Chicago. All rights reserved. 1058-5893/2002/16304-0001$15.00 STRUCTURE AND FUNCTION OF SPORES IN THE AQUATIC HETEROSPOROUS FERN FAMILY MARSILEACEAE Harald Schneider1 and Kathleen M. Pryer2 Department of Botany, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A. Spores of the aquatic heterosporous fern family Marsileaceae differ markedly from spores of Salviniaceae, the only other family of heterosporous ferns and sister group to Marsileaceae, and from spores of all ho- mosporous ferns. The marsileaceous outer spore wall (perine) is modified above the aperture into a structure, the acrolamella, and the perine and acrolamella are further modified into a remarkable gelatinous layer that envelops the spore. Observations with light and scanning electron microscopy indicate that the three living marsileaceous fern genera (Marsilea, Pilularia, and Regnellidium) each have distinctive spores, particularly with regard to the perine and acrolamella. Several spore characters support a division of Marsilea into two groups. Spore character evolution is discussed in the context of developmental and possible functional aspects. The gelatinous perine layer acts as a flexible, floating organ that envelops the spores only for a short time and appears to be an adaptation of marsileaceous ferns to amphibious habitats. The gelatinous nature of the perine layer is likely the result of acidic polysaccharide components in the spore wall that have hydrogel (swelling and shrinking) properties. Megaspores floating at the water/air interface form a concave meniscus, at the center of which is the gelatinous acrolamella that encloses a “sperm lake.” This meniscus creates a vortex-like effect that serves as a trap for free-swimming sperm cells, propelling them into the sperm lake.
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Garryales Nymphaeales Austrobaileyales
    Amborellales Garryales Nymphaeales Austrobaileyales Acorales G Eenzaadlobbigen G Alismatales Petrosaviales Garryales Pandanales Deze kleine, nieuwe orde is de Dioscoreales Liliales tweehuizige planten die bepaa Asparagales haren. De bloemen zijn klein en De twee families zijn afkomstig Arecales Dasypogonales Eucommiales, in de Hamamelisa Poales Van niet alle planten uit deze o G Commeliniden G Commelinales Zingiberales Gentianales Ceratophyllales De Gentianales zijn een goed o Chloranthales kenmerken. De Gentiaanfamilie (Apocynaceae) vormden altijd a Canellales eerst in een eigen orde, de Rub Piperales G Magnoliiden G Magnoliales Laurales Er zijn overeenkomsten in de ba het matK-gen in het chloroplast Ranunculales Sabiales Ze hebben altijd steunblaadjes, Proteales afscheiden om de groeitoppen Trochodendrales bloemkroon ligt gedraaid in de Buxales soms erg giftig. Gunnerales Berberidopsidales Dilleniales Caryophyllales Santalales Saxifragales G Geavanceerde tweezaadlobbigen G Vitales Crossosomatales Geraniales Myrtales Garryales Zygophyllales This small, new order is the sister gr Celastrales Malpighiales that contain iridoids like aucubin. T G Fabiden G Oxalidales indehiscent fruits. Fabales The two families come from other o Rosales Hamamelidae, and Garryaceae from Cucurbitales sufficiently known. Fagales Brassicales G G Gentianales Malviden Malvales Sapindales Gentianales are a well circumscribed Gentianaceae, Loganiaceae, and Ap Cornales Ericales G Asteriden G Eucommiaceae Garryales Garryaceae G Lamiiden G Gentianales Solanales Rubiaceae Lamiales Gentianaceae Loganiaceae Aquifoliales Gelsemiaceae G G Apiales Campanuliden Apocyynaceae Dipsacales 21 Asterales Garryales | Gentianales I Euc Deze f loofver De bla De blo Garryales Iep. De Deze kleine, nieuwe orde is de zustergroep van de rest van de Lamiiden. Het zijn houtige, De soo chemis tweehuizige planten die bepaalde iridoiden bevatten, zoals aucubine. Ze hebben eencellige tonicum haren.
    [Show full text]
  • Pillwort Identification Crib Sheet
    Distinguishing Pillwort from similar looking plants CRIB SHEET TO AID FIELD IDENTIFICATION Pillwort (Pilularia globulifera) is a rare fern with a very unfern-like appearance: except for its tightly coiled young fronds – it looks much more like a small grass or rush. There are two main issues for identifying Pillwort: (i) Finding plants in the first place – when Pillwort is growing amongst other plants or in deeper water it can be difficult to see – and even experienced botanists sometimes miss it! (ii) Distinguishing Pillwort from similar grass-like aquatic plants with which it can be confused. What Pillwort looks like: Pillwort is a low creeping plant with fine, cylindrical grass-like fronds that grow from a creeping runner (rhizome). Fronds often slightly wavy Fronds often Young fronds often wavy Brown/black tightly curled – a spore- characteristic containing feature not found in ‘pills’ found other look-alike at the base plants of the fronds Young fronds curled Rhizome sturdy, Single, or small and often similar to numbers of the fronds fronds grow from each Sturdy rhizomes – rhizome node rather similar to the leaves How to search for Pillwort: There are three stages to surveying Pillwort in a pond or pool: (i) Scan the shallow water, damp and dry pool edges to look for Pillwort plants. Search particularly carefully in pools which already have plants that are often associated with Pillwort (see below) (ii) Look for submerged features, and where necessary pull-up likely plants to check them (and then replant) until you have found Pillwort. Up-rooting pond plants should be minimised, but is unavoidable at first (and especially when you are still learning) because to definitively identify Pillwort you need to look at the whole plant, including its creeping runner-like rhizomes.
    [Show full text]
  • La Flora Vascolare Della Penisola Del Sinis (Sardegna Occidentale)
    AFlcotraa Bvaostcaonliacrae MPeanliascoiltaa ndael 3S3i.n 9is1-124 Málaga, 209018 LA FLORA VASCOLARE DELLA PENISOLA DEL SINIS (SARDEGNA OCCIDENTALE) Giuseppe FENU & Gianluigi BACCHETTA* Centro Conservazione Biodiversità (CCB). Dipartimento di Scienze Botaniche. Università degli Studi di Cagliari v.le Sant’Ignazio da Laconi, 13. 09123 Cagliari (Italia) *Corresponding author: [email protected] Recibido el 17 de noviembre de 2007, aceptado para su publicación el 18 de febrero de 2008 Publicado "on line" en marzo de 2008 RIASSUNTO. La flora vascolare della Penisola del Sinis (Sardegna Occidentale). Viene presentato lo studio della flora vascolare della Penisola del Sinis; in totale sono state rinvenute 760 unità tassonomiche e in particolare 615 specie, 134 sottospecie, 10 varietà e 1 ibrido, riferibili a 365 generi e 87 famiglie. Le Eudicots sono risultate il gruppo sistematico dominante. Le famiglie più rappresentate sono: Poaceae (99 unità tassonomiche), Fabaceae e Asteraceae (85), Caryophyllaceae (33), Apiaceae (27) e Orchidaceae (24). I generi con maggior numero di taxa sono: Trifolium (19), Silene (14), Limonium e Medicago (13), Ophrys (12), Euphorbia e Vicia (10), Plantago (9), Allium (8) e infine Lotus, Ranunculus e Vulpia (7). Il contingente delle endemiche (54 unità tassonomiche) è risultato pari al 8,97% della componente mediterranea e mostra una dominanza degli elementi sardo-corsi (33,33%) e secondariamente sardi (24,10%), i quali unitamente raggiungono il 57,43% del totale. La flora endemica è costituita da 31 specie, 17 sottospecie e 6 varietà, inquadrati in 38 generi e 22 famiglie. Le famiglie più rappresentate sono risultate le Plumbaginaceae (10), Asteraceae e Lamiaceae (5), Fabaceae (4), Alliaceae, Euphorbiaceae e Ranunculaceae (3); il genere più ricco è risultato Limonium (10), seguito da Allium, Delphinium, Euphorbia, Scrophularia, Silene e Teucrium (2).
    [Show full text]