A Fine-Grained 3D IC Technology with NP-Dynamic Logic

Total Page:16

File Type:pdf, Size:1020Kb

A Fine-Grained 3D IC Technology with NP-Dynamic Logic Received 13 June 2016; revised 24 February 2017; accepted 8 March 2017. Date of publication 20 March 2017; date of current version 7 June 2017. Digital Object Identifier 10.1109/TETC.2017.2684781 NP-Dynamic Skybridge: A Fine-Grained 3D IC Technology with NP-Dynamic Logic JIAJUN SHI, MINGYU LI, MOSTAFIZUR RAHMAN, SANTOSH KHASANVIS, AND CSABA ANDRAS MORITZ J. Shi, M. Li, and C.A. Moritz are with the Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 M. Rahman is with the School of Computing and Engineering, University of Missouri, Kansas City, MO 65211 S. Khasanvis is with BlueRISC Inc., Amherst, MA 01002 CORRESPONDING AUTHOR: J. SHI ([email protected]) ABSTRACT A new 3D IC fabric named NP-Dynamic Skybridge is proposed that provides fine-grained vertical 3D integration for future technology scaling. Relying on a template of vertical nanowires, it expands our prior work to incorporate and utilize both n- and p-type transistors in a novel NP-Dynamic circuit-style compatible with true 3D integration. This enables a wide range of elementary logics leading to more compact circuits, simple clocking schemes for cascading logic stages and low buffer requirement. We detail new design concepts for larger-scale circuits, and evaluate our approach using a 4-bit nanoprocessor implemented in 16 nm technology node. A new pipelining scheme specifically designed for our 3D NP-Dynamic circuits is employed in the nanoprocessor. We compare our approach with 2D CMOS as well as state-of-the-art tran- sistor-level monolithic 3D IC (T-MI) approach. Benchmarking results for the 4-bit nanoprocessor show bene- fits of up to 56.7x density, 3.8x power and 1.7x throughput over 2D CMOS. Compared with T-MI, our new 3D fabric showed 31x density, 3x power and 1.4x throughput improvement. Additional evaluation of 4-bit and 8-bit CLA designs shows that significantly improved gains can be achieved for our 3D approach over 2D CMOS with increasing circuit bit-width, indicating potential for future scalability. INDEX TERMS 3D IC fabric, NP-Dynamic circuits, emerging technologies, vertical nanowires, nanoscale computing fabrics, nanoprocessor I. INTRODUCTION In the Skybridge fabric, uniform n-type transistors are used in 2D CMOS integrated circuit (IC) technology scaling faces a dynamic circuit style [6], and n-type transistor based NAND severe challenges that result from device scaling limitations and AND-of-NAND compound gates are the elementary logic [1], [2], interconnect bottleneck that dominates power and functions. Multiple clock signals are used to control the cas- performance [3], etc. 3D ICs with die-die and layer-layer cading of elementary logic stages, and buffers are used in- stacking using Through Silicon Vias (TSVs) [4] and Mono- between stages for signal propagation and restoration in large- lithic Inter-layer Vias (MIVs) [5] have been explored in recent scale designs, which introduce limitations. years to generate circuits with considerable interconnect sav- Here, we propose NP-Dynamic Skybridge fabric [12] that ing for continuing technology scaling. However, these 3D IC incorporates both n- and p-type transistors to build a new technologies still rely on conventional 2D CMOS’s device, class of fine-grained 3D integrated circuits. It follows a fab- circuit and interconnect mindset showing only incremental ric-centric mindset to integrate both n- and p-type circuit benefits [8] while adding new challenges such as thermal components in the physical layer for 3D compatibility. The management, manufacturing and reliability issues [4], [5]. use of both n- and p-type transistors allows a wide range of In [6], [7], a vertical nanowire based 3D integrated circuit elementary logic functions to be supported including NAND, fabric called Skybridge was proposed showing a pathway for AND-of-NAND, NOR and OR-of-NOR, which provide high truly fine-grained 3D integration. In this 3D fabric, core IC flexibility for implementation of logic functions. This results fabric aspects from device to circuit-style, connectivity [9], in compact circuit designs with short interconnects and low thermal management [10] and manufacturing pathway [11] buffer requirement. The use of NP-Dynamic circuit style also are co-architected keeping 3D compatibility in mind, and uses allows a simple clocking scheme (since alternately cascading the vertical dimension instead of a multi-layered 2D mindset. n- and p-type logic stages maps intrinsically to the signal 2168-6750 ß 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. 286 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 5, NO. 2, APRIL-JUNE 2017 Shi et al.: NP-Dynamic Skybridge: A Fine-Grained 3D IC Technology with NP-Dynamic Logic monotonicity requirement of dynamic circuits). The achieved towards a functional circuit is an ongoing long-term effort. design with unique 3D components has good connectivity [9] Figure 1A shows the envisioned NP-Dynamic Skybridge; and routability [13] to address high-density interconnects in Using a similar process flow described in [11], vertical nano- larger-scale circuits, which leads to compact circuit design wires, are constructed primarily through masking and high with significant power efficiency and high performance. aspect ratio etching on heavily doped silicon bulk (other meth- In this paper, the NP-Dynamic Skybridge approach is ods are also possible). Architected fabric components are con- extensively evaluated at the circuit-level and system-level to structed on these nanowires by using material deposition investigate its benefits in circuit designs with complex and techniques [11]. In this section, we present the core compo- high-density interconnects. For circuit-level evaluation, its nents that enable fine-grained integration of both n- and p-type core fabric components including fabric structures facilitat- nanowires in Skybridge fabric. Detailed explanation of mate- ing both n- and p-type integration and elementary logic gates rial selection and working mechanism are presented to illus- combined with TCAD and HSPICE simulations are pre- trate how these components are used in unison to achieve sented in detail. For system-level evaluation, a 4-bit Wire desired functionality and 3D compatibility with circuits imple- Stream Processor (WISP-4) [14] design is used as bench- mented across both horizontal and vertical dimensions. mark. A new pipelining scheme specifically designed for NP-Dynamic 3D circuit style is used in the WISP-4 design to A. VERTICAL NANOWIRES reduce the operation time of each stage in pipeline for Vertical nanowires are the fundamental building blocks that improved throughput. Device-to-circuit fabric evaluation is enable vertical stacking of designed core Skybridge compo- presented for WISP-4 accounting for characteristics of nents. The nanowires serve multiple functions – they can act selected materials, circuit style, placement and routing, and as (i) logic nanowires that have stacked transistors to imple- 3D layouts, which shows up to 56.7x density benefit, 3.8x ment required logic gates, (ii) routing nanowires to carry power efficiency and 1.7x benefit in throughput against 2D electrical signals along the vertical dimension, and (iii) heat CMOS with the equivalent technology node. We also com- dissipating nanowires to extract and sink heat generated dur- pare our approach with the state-of-the-art approach of con- ing circuit operation to the bulk substrate [10]. ventional 3D IC direction, the transistor-level monolithic 3D The nanowire formation step precedes all manufacturing IC (T-MI) [15] using equivalent technology node. Our 3D steps, and is done after wafer preparation. Wafer preparation approach showed up to 31x density benefit, 3x power effi- involves stacking heavily doped n-type and p-type silicon ciency and 1.4x benefit in throughput against T-MI 3D IC. layers to create a dual-doped silicon wafer (Figure 1B). This Additionally, we used 4-bit and 8-bit CLAs as benchmark to can be achieved by bonding heavily doped n-type and p-type evaluate NP-Dynamic Skybridge’s gain over 2D CMOS as substrates using techniques that are similar to the ones the bit-width of design grows; NP-Dynamic’s 8-bit CLA described in literature [16], [17] and currently used for con- design has 24 percent increased latency and 16 percent ventional 3D ICs. A silicon dioxide layer is used between the increased power compared with 4-bit CLA design while 2D n-type and p-type doped silicon layers for isolation. Vertical CMOS’s 8-bit CLA design has 2x latency and 25 percent nanowire patterning can be achieved through inductively increased power compared with 4-bit CLA design. coupled plasma etching [11], [18] and has been experimen- The rest of the paper is organized as follows: Section II tally demonstrated as shown in Figure 2A. presents the proposed 3D fabric’s core components. In Section III, we show the elementary gates and their fan-in sensitivity B. VERTICAL GATE-ALL-AROUND (VGAA) analysis. Section IV shows a device-to-circuit evaluation TRANSISTOR methodology for this new fabric. Then, in Section V, we show VGAA junctionless transistors are used as active devices, and the benchmarking of a 4-bit nanoprocessor (WISP-4) with an are formed on nanowires through consecutive material depo- optimized pipelining scheme for improved throughput versus sition steps [11]. These junctionless transistors use uniform 2D CMOS and T-MI 3D. Section VI presents a preliminary doping with no abrupt variation in Drain/Source/Channel study of gain versus bit-width utilizing carry look-ahead adder regions (Figure 1D-E), which simplifies manufacturing designs. Section VII concludes the paper. requirements and is especially suitable for this fabric. Their channel conduction is modulated by the workfunction differ- II. ENABLING 3D INTEGRATION: CORE COMPONENTS ence between the heavily doped channel and the gate [19].
Recommended publications
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Implications of Modern Semiconductor Technologies on Gate Sizing Permalink https://escholarship.org/uc/item/56s9b2tm Author Lee, John Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Implications of Modern Semiconductor Technologies on Gate Sizing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering by John Hyung Lee 2012 c Copyright by John Hyung Lee 2012 Abstract of the Dissertation Implications of Modern Semiconductor Technologies on Gate Sizing by John Hyung Lee Doctor of Philosophy in Electrical Engineering University of California, Los Angeles, 2012 Professor Puneet Gupta, Chair Gate sizing is one of the most flexible and powerful methods available for the timing and power optimization of digital circuits. As such, it has been a very well-studied topic over the past few decades. However, developments in modern semiconductor technologies have changed the context in which gate sizing is performed. The focus has shifted from custom design methods to standard cell based designs, which has been an enabler in the design of modern, large-scale designs. We start by providing benchmarking efforts to show where the state-of-the-art is in standard cell based gate sizing. Next, we develop a framework to assess the impact of the limited precision and range available in the standard cell library on the power-delay tradeoffs. In addition, shrinking dimensions and decreased manufacturing process control has led to variations in the performance and power of the resulting designs.
    [Show full text]
  • Biomedical Nanotechnology.Pdf
    BIOMEDICAL NANOTECHNOLOGY BIOMEDICAL NANOTECHNOLOGY Edited by Neelina H. Malsch Boca Raton London New York Singapore CRC PRESS, a Taylor & Francis title, part of the Taylor and Francis Group. Published in 2005 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2005 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 0-8247-2579-4 (Hardcover) International Standard Book Number-13: 978-0-8247-2579-2 (Hardcover) Library of Congress Card Number 2005045702 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
    [Show full text]
  • PDF Downloads
    Engineering Advances, 2021, 1(1), 26-30 http://www.hillpublisher.com/journals/ea/ ISSN Online: ****-**** ISSN Print: ****-**** Nanofabrics—The Smart Textile Nida Tabassum Khan1,*, Muhammad Jibran Khan2 1Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology En- gineering and Management Sciences, (BUITEMS), Quetta, Pakistan. 2Department of Electrical Engineering, Faculty of Information and Communication Technology, Balochistan University of Infor- mation Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan. How to cite this paper: Nida Tabassum Khan, Muhammad Jibran Khan. (2021) Abstract Nanofabrics—The Smart Textile. Engi- Nanotechnology is tied in with improving and carrying the up and coming bril- neering Advances, 1(1), 26-30. DOI: 10.26855/ea.2021.06.005 liant answers for nanoscale-level merchandise. It is tied in with organizing the particles to change measurements and improvement attributes, for example, bril- Received: April 28, 2021 liant texture. These textures can help makers with the additional significance of Accepted: May 25, 2021 expectations for everyday comforts, visual intrigue, and framework needed inno- Published: June 18, 2021 vative creations. Particles of nano size may uncover unexpected qualities unlike *Corresponding author: Nida Tabas- the mass material. Nanotechnology has multifunctional highlights in the produc- sum Khan, Department of Biotechnol- tion of textures in the advancement of resistance stain and wrinkles, fire resistant, ogy, Faculty of Life Sciences and In- antimicrobial and antistatic properties, dampness guideline, bright security and formatics, Balochistan University of Information Technology Engineering discharge attributes. Inside the texture the nanomaterials could impact various and Management Sciences, characteristics, including decrease electrical conductivity, combustibility and (BUITEMS), Quetta, Pakistan.
    [Show full text]
  • The Views of Experts and the Public Regarding Societal Preferences for Innovation in Nanotechnology
    The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis committee Promoter Prof. Dr L.J. Frewer Professor emeritus, Food Safety and Consumer Behaviour Wageningen University Professor of Food & Society Newcastle University, UK Co-promotors Dr A.R.H. Fischer Assistant Professor, Marketing and Consumer Behaviour Group Wageningen University Dr F.W.H. Kampers Director, Biotechnology Center for Food and Health Innovation Wageningen University Other members Prof. Dr G. Antonides, Wageningen University Dr H.J.P Marvin, RIKILT, Wageningen University and Research Center Prof. Dr H. van Lente, Utrecht University Dr Q. Chaudhry, Food & Environment Research Agency (FERA), North Yorkshire,UK This research was conducted under the auspices of the Graduate School of Wageningen Social Sciences (WASS) The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 9 December 2013 at 1.30 p.m. in the Aula. Nidhi Gupta The views of experts and the public regarding societal preferences for innovation in nanotechnology, 188 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN: 978-94-6173-762-5 To Ma, Pa, Mannu and Mannat Contents A Abstract iii 1 General Introduction 1 1.1 Nanotechnology: exploring the future with key stakeholders . 3 1.2 Scope and outline of the thesis .
    [Show full text]
  • Predictive Aging of Reliability of Two Delay Pufs
    Predictive Aging of Reliability of two Delay PUFs Naghmeh Karimi1, Jean-Luc Danger2;3, Florent Lozac'h3, and Sylvain Guilley2;3 1 ECE Department, Rutgers University, Piscataway, NJ, USA 08854 [email protected] 2 LTCI, CNRS, T´el´ecom ParisTech, Universit´eParis-Saclay, 75013 Paris, France [email protected] 3 Secure-IC SAS, 35510 Cesson-S´evign´e,France [email protected] Abstract. To protect integrated circuits against IP piracy, Physically Unclonable Functions (PUFs) are deployed. PUFs provide a specific signature for each integrated circuit. However, environmental variations, (e.g., temperature change), power supply noise and more influential IC aging affect the functionally of PUFs. Thereby, it is important to evaluate aging effects as early as possible, preferentially at design time. In this paper we investigate the effect of aging on the stability of two delay PUFs: arbiter-PUFs and loop-PUFs and analyze the architectural impact of these PUFS on reliability decrease due to aging. We observe that the reliability of the arbiter-PUF gets worse over time, whereas the reliability of the loop-PUF remains constant. We interpret this phenomenon by the asymmetric aging of the arbiter, because one half is active (hence aging fast) while the other is not (hence aging slow). Besides, we notice that the aging of the delay chain in the arbiter-PUF and in the loop-PUF has no impact on their reliability, since these PUFs operate differentially. 1 Introduction With the advancement of VLSI technology, people are increasingly relying on electronic devices and in turn integrated circuits (ICs).
    [Show full text]
  • Supporting Information
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supporting Information For RSC Adv. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases Hamid Souzandeh, Yu Wang*and Wei-Hong Zhong * School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164 (USA) E-mail: [email protected] [email protected] S0 Gelatin solution and nanofiber mat preparation. Gelatin was dissolved in mixed solvent (volume ratio, acetic acid : DI water = 80 : 20) with a concentration of 18 wt% at 65 °C. The mixed solvent was used to achieve a good electrospinning of the gelatin solution. With that ratio between water and acetic acid, it was found that a homogenous yellow solution and stable electrospinning of the solution can be achieved. The electrospinning of gelatin solution is a well- known process and the effect of viscosity on electrospinning of gelatin has been studied before.1 After the homogenous gelatin solution (18 wt%) is prepared, the nanofibers were spun at room temperature on an aluminum mesh substrate. The areal density of the nanofabrics was controlled by controlling the volume of the solution that was electrospun on the substrate. The gelatin nanofabrics possessed a thickness within the range of 8 – 20 μm. In particular, the sample with the best air filtration properties (areal density = 3.43 g/m2) possesses a thickness of about 16 μm. The gelatin nanofabrics can be handled manually even though they are not crosslinked, but it is challenging due to very high electrostatic charge of the nanofibers.
    [Show full text]
  • 33. B.Tech. in Nanotechnology
    SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Kattankulathur, Kancheepuram District 603203, Tamil Nadu, India 33. B.Tech. in Nanotechnology 33. (a) Mission of the Department Mission Stmt - 1 Actively contribute for the development of nanoscience, engineering and technology through world-class infrastructure, teaching & research Mission Stmt - 2 Establish collaborative research with the institutions of national and international repute Mission Stmt - 3 Encourage industry-academia interactions to translate scientific findings into technological development to meet the societal needs Mission Stmt - 4 Organize and actively participate in workshops, conferences and seminars on advancements in nanoscience and nanotechnology Mission Stmt - 5 Focus on developing skills of students to enhance the employability in various organizations 33. (b) Program Educational Objectives (PEO) PEO - 1 Provide understanding of physical, chemical and biological principles in the multi-disciplinary field of nanoscience and nanotechnology PEO - 2 Develop skills on the synthesis of nanomaterials and fabrication of micro- and nano-structures PEO - 3 Familiarize the graduates with the advanced nanoscale characterization techniques and develop the analytical ability PEO - 4 Enable graduates with professional, scientific research, and computational skills for employment in industries, R & D centres and higher education PEO - 5 Prepare the graduates to take individual and team work responsibilities in a multidisciplinary environment 33. (c) Mission of the Department to Program Educational Objectives (PEO) Mapping Mission Stmt - 1 Mission Stmt - 2 Mission Stmt - 3 Mission Stmt - 4 Mission Stmt - 5 PEO - 1 H M L H L PEO - 2 H H M H H PEO - 3 H H M H M PEO - 4 H M H M H PEO - 5 M H H H M H – High Correlation, M – Medium Correlation, L – Low Correlation 33.
    [Show full text]
  • Eg, Nangate 15 Nm Standard Cell Library
    Nanosystem Design Kit (NDK): Transforming Emerging Technologies into Physical Designs of VLSI Systems G. Hills, M. Shulaker, C.-S. Lee, H.-S. P. Wong, S. Mitra Stanford Massachusetts University Institute of Technology Abundant-Data Explosion “Swimming in sensors, drowning in data” Wide variety & complexity Unstructured data 0 40K 0 ExaB (Billionsof GB) 2006 Year 2020 Mine, search, analyze data in near real-time Data centers, mobile phones, robots 2 Abundant-Data Applications Huge memory wall: processors, accelerators Energy Measurements Genomics classification Natural language processing 5% 18 % 0% 0% … 95 82 % % Compute Memory Intel performance counter monitors 2 CPUs, 8-cores/CPU + 128GB DRAM 3 US National Academy of Sciences (2011) 4 Computing Today 2-Dimensional 5 3-Dimensional Nanosystems Computation immersed in memory 6 3-Dimensional Nanosystems Computation immersed in memory Increased functionality Fine-grained, Memory ultra-dense 3D Computing logic Impossible with today’s technologies 7 Enabling Technologies 3D Resistive RAM Massive storage No TSV 1D CNFET, 2D FET Compute, RAM access thermal STT MRAM Ultra-dense, Quick access fine-grained 1D CNFET, 2D FET vias Compute, RAM access thermal 1D CNFET, 2D FET Silicon Compute, Power, Clock compatible thermal 8 Nanosystems: Compact Models Essential 3D Resistive RAM nanohub Massive storage 1D CNFET, 2D FET Compute, RAM access thermal STT MRAM Quick access m-Cell 1D CNFET, 2D FET Compute, RAM access thermal 1D CNFET, 2D FET Compute, Power, Clock thermal 9 Compact Models: Insufficient Alone Design for Realistic Systems Wire parasitics Inter-module interface circuits Routing congestion Application-dependent workloads Multiple clock domains Cache architecture Memory access patterns Processor vs.
    [Show full text]
  • Skybridge: 3-D Integrated Circuit Technology Alternative to CMOS
    Skybridge: 3-D Integrated Circuit Technology Alternative to CMOS Mostafizur Rahman, Santosh Khasanvis, Jiajun Shi, Mingyu Li, and Csaba Andras Moritz Continuous scaling of CMOS has been the major catalyst doped precisely in isolated 3-D regions, which is impractical. in miniaturization of integrated circuits (ICs) and crucial In addition to these, there is no heat extraction capability for global socio-economic progress. However, scaling to inherent to CMOS to prevent thermal hotspot development. sub-20nm technologies is proving to be challenging as Admittedly, since the inception of vertical devices in 20006 MOSFETs are reaching their fundamental limits1 and there has been no success in the realization of 3-D CMOS interconnection bottleneck2 is dominating IC operational despite a significant industrial push. power and performance. Migrating to 3-D, as a way to In contrast to CMOS, that has evolved focusing on the advance scaling, has eluded us due to inherent device especially and requires a largely component-centric customization and manufacturing requirements in CMOS assembly, the Skybridge fabric shifts to a fabric-centric that are incompatible with 3-D organization. Partial mindset and provides an integrated solution for all technology attempts with die-die3 and layer-layer4 stacking have their aspects. First, it starts with a regular array of uniform vertical own limitations5. We propose a 3-D IC fabric technology, nanowires that forms the Skybridge template (Fig. 1A). SkybridgeTM, which offers paradigm shift in technology Second, its doping requirement is uniform, without regions, scaling as well as design. We co-architect Skybridge’s core and done once at the wafer level.
    [Show full text]
  • Small Is Big Investigating Nanotechnology and Its Applications TEACHER NOTES
    Small is Big Investigating Nanotechnology and its Applications TEACHER NOTES Lesson Overview Nanotechnology is the science of studying and creating materials, devices, and systems using very small particles that measure from 1 to 100 nanometers. This investigation introduces students to the nanoscale. They work in cooperative groups to understand key ideas related to nanotechnology and identify examples of its use. Inquiry – Students investigate key concepts and structures used in nanotechnology. They discover that matter at the nanoscale has different properties and behavior than the same matter at a larger scale. They learn that advances in technology spur innovation in product use and development. NOS – Understand how nanotechnology is being applied to create new materials (science is a blend of logic and imagination). STEM – Students conduct internet-based research using wireless technology to learn about nanotechnology; they determine how engineers apply nanoscale particles and systems to improve methods and develop new products. Suggested Time 3 45-minute periods Boil water just before class Set up document camera Class Materials for teacher demonstration. 20 cm nitinol wire 20 cm copper or other metal wire Print and Electronic Resources 4 250 mL beakers • National Nanotechnology Initiative laptop computers with internet access http://www.nano.gov/ hot plate • Nanooze Magazine Bunsen burner or candle http://www.nanooze.org/main/Nano test tube clamp oze/English.html pot holder • How Stuff Works http://science.howstuffworks.com/n Preparation anotechnology.htm# Reserve a computer cart for • Nanotechnology: Big Things from a classroom use. Tiny World, National Identify and bookmark websites for Nanotechnology Initiative, July 7, student research.
    [Show full text]
  • Sustainable Use of Nanomaterials in Textiles and Their Environmental Impact
    materials Review Sustainable Use of Nanomaterials in Textiles and Their Environmental Impact Haleema Saleem and Syed Javaid Zaidi * Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar; [email protected] * Correspondence: [email protected]; Tel.: +974-4403-7723 Received: 15 October 2020; Accepted: 9 November 2020; Published: 13 November 2020 Abstract: At present, nanotechnology is a priority in research in several nations due to its massive capability and financial impact. However, due to the uncertainties and abnormalities in shape, size, and chemical compositions, the existence of certain nanomaterials may lead to dangerous effects on the human health and environment. The present review includes the different advanced applications of nanomaterials in textiles industries, as well as their associated environmental and health risks. The four main textile industry fields using nanomaterials, nanofinishing, nanocoatings, nanofibers, and nanocomposites, are analyzed. Different functional textiles with nanomaterials are also briefly reviewed. Most textile materials are in direct and prolonged contact with our skin. Hence, the influence of carcinogenic and toxic substances that are available in textiles must be comprehensively examined. Proper recognition of the conceivable benefits and accidental hazards of nanomaterials to our surroundings is significant for pursuing its development in the forthcoming years. The conclusions of the current paper are anticipated to increase awareness on the possible influence of nanomaterial-containing textile wastes and the significance of better regulations in regards to the ultimate disposal of these wastes. Keywords: nanomaterials; environmental impacts; textiles; toxicity; health and safety 1. Introduction The idea of nanotechnology was initially presented by Richard Feynman in the year 1959, through his speech “There’s Plenty of Room at the Bottom”, which was delivered at an American Physical Society conference, at the California Institute of Technology (Feynman, 1959, [1]).
    [Show full text]
  • Timing Analysis of Integrated Circuits
    UNIVERSITY OF THESSALY SCHOOL OF ENGINEERING Department of Computer & Communication Engineering TIMING ANALYSIS OF INTEGRATED CIRCUITS Master Thesis : Alexandros Mittas Lazaridis July 2012 Volos - Greece 1 Institutional Repository - Library & Information Centre - University of Thessaly 08/12/2017 17:59:09 EET - 137.108.70.7 DEDICATION To my parents and friends Hope for better days. 2 Institutional Repository - Library & Information Centre - University of Thessaly 08/12/2017 17:59:09 EET - 137.108.70.7 ACKNOWLEDGMENTS First I would like to thank Dr. George Stamoulis for advising me for the last 4 years. I have learned many things from him and consider myself fortunate to have been one of his students. I would also like to thank Dr. Nestoras Eymorfopoulos and Dr. Ioannis Moudanos. Without their patience and crucial support this thesis would not have been completed. Finally I am really grateful to my roommates in E5 room of Glavani Steet whose help was really appreciated. Konstantis, Giorgos, Babis, Tasos, Sofia, and Alexia I am really obliged. Forgive me if having forgotten to mention anyone. 3 Institutional Repository - Library & Information Centre - University of Thessaly 08/12/2017 17:59:09 EET - 137.108.70.7 1 Introduction _________________________________ 6 1.1 Goal of this Thesis.............................................................................................6 1.2 Moore’s Law……………………..……………………………..…………………………………………..6 2 Timing Analysis 8 2.1 What is Timing Analysis......................................................................................8
    [Show full text]