POWER QUALITY Energy Efficiency Reference Guide DISCLAIMER: Neither CEA Technologies Inc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultracapacitors for Port Crane Applications: Sizing and Techno-Economic Analysis
energies Article Ultracapacitors for Port Crane Applications: Sizing and Techno-Economic Analysis Mostafa Kermani 1,*, Giuseppe Parise 1, Ben Chavdarian 2 and Luigi Martirano 1 1 Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy; [email protected] (G.P.); [email protected] (L.M.) 2 P2S, Inc., Long Beach, CA 90815, USA; [email protected] * Correspondence: [email protected] Received: 2 March 2020; Accepted: 7 April 2020; Published: 22 April 2020 Abstract: The use of energy storage with high power density and fast response time at container terminals (CTs) with a power demand of tens of megawatts is one of the most critical factors for peak reduction and economic benefits. Peak shaving can balance the load demand and facilitate the participation of small power units in generation based on renewable energies. Therefore, in this paper, the economic efficiency of peak demand reduction in ship to shore (STS) cranes based on the ultracapacitor (UC) energy storage sizing has been investigated. The results show the UC energy storage significantly reduce the peak demand, increasing the load factor, load leveling, and most importantly, an outstanding reduction in power and energy cost. In fact, the suggested approach is the start point to improve reliability and reduce peak demand energy consumption. Keywords: ultracapacitor sizing; techno-economic analysis; energy storage system (ESS); ship to shore (STS) crane; peak shaving; energy cost 1. Introduction It is well known that large-scale commodity (and people) transport uses the sea as a crucial and optimal route. In maritime transportation ports and harbors with power demands of tens of megawatts based on some vast consumers with a high peak level (such as giant cranes, cold ironing, etc.) require a unique power system. -
Introduction to Power Quality
CHAPTER 1 INTRODUCTION TO POWER QUALITY 1.1 INTRODUCTION This chapter reviews the power quality definition, standards, causes and effects of harmonic distortion in a power system. 1.2 DEFINITION OF ELECTRIC POWER QUALITY In recent years, there has been an increased emphasis and concern for the quality of power delivered to factories, commercial establishments, and residences. This is due to the increasing usage of harmonic-creating non linear loads such as adjustable-speed drives, switched mode power supplies, arc furnaces, electronic fluorescent lamp ballasts etc.[1]. Power quality loosely defined, as the study of powering and grounding electronic systems so as to maintain the integrity of the power supplied to the system. IEEE Standard 1159 defines power quality as [2]: The concept of powering and grounding sensitive equipment in a manner that is suitable for the operation of that equipment. In the IEEE 100 Authoritative Dictionary of IEEE Standard Terms, Power quality is defined as ([1], p. 855): The concept of powering and grounding electronic equipment in a manner that is suitable to the operation of that equipment and compatible with the premise wiring system and other connected equipment. Good power quality, however, is not easy to define because what is good power quality to a refrigerator motor may not be good enough for today‟s personal computers and other sensitive loads. 1.3 DESCRIPTIONS OF SOME POOR POWER QUALITY EVENTS The following are some examples and descriptions of poor power quality “events.” Fig. 1.1 Typical power disturbances [2]. ■ A voltage sag/dip is a brief decrease in the r.m.s line-voltage of 10 to 90 percent of the nominal line-voltage. -
Wireless Power Transmission
International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 125 ISSN 2229-5518 Wireless Power Transmission Mystica Augustine Michael Duke Final year student, Mechanical Engineering, CEG, Anna university, Chennai, Tamilnadu, India [email protected] ABSTRACT- The technology for wireless power transfer (WPT) is a varied and a complex process. The demand for electricity is much higher than the amount being produced. Generally, the power generated is transmitted through wires. To reduce transmission and distribution losses, researchers have drifted towards wireless energy transmission. The present paper discusses about the history, evolution, types, research and advantages of wireless power transmission. There are separate methods proposed for shorter and longer distance power transmission; Inductive coupling, Resonant inductive coupling and air ionization for short distances; Microwave and Laser transmission for longer distances. The pioneer of the field, Tesla attempted to create a powerful, wireless electric transmitter more than a century ago which has now seen an exponential growth. This paper as a whole illuminates all the efficient methods proposed for transmitting power without wires. —————————— —————————— INTRODUCTION Wireless power transfer involves the transmission of power from a power source to an electrical load without connectors, across an air gap. The basis of a wireless power system involves essentially two coils – a transmitter and receiver coil. The transmitter coil is energized by alternating current to generate a magnetic field, which in turn induces a current in the receiver coil (Ref 1). The basics of wireless power transfer involves the inductive transmission of energy from a transmitter to a receiver via an oscillating magnetic field. -
How to Select an AC Power Supply by Grady Keeton
858.458.0223 | www.programmablepower.com White Paper How to Select an AC Power Supply By Grady Keeton Today’s electronic products must work under all types of The response of the AC power source to inrush current is conditions, not just ideal ones. That being the case, AC sources dependent on the method that the source uses for current- used in test applications must not only supply a stable source of limiting. AC power sources are designed to protect themselves AC, they must also simulate power-line disturbances and other from excessive loads current by either folding back the voltage non-ideal situations. (current limiting) or shutting down the output (current-limiting shutdown) and in many cases, this is user selectable. Fortunately, today’s switching AC power sources are up to the task. They offer great specifications and powerful waveform- In some instances, it may not be practical to have an AC source generation capabilities that allow users to more easily that can supply the full inrush current demanded by the load. If generate complex harmonic waveforms, transient waveforms, the test does not require the stress test from this current, it may and arbitrary waveforms than ever before. Some can even be possible to use the current-limiting foldback technique for provide both AC and DC outputs simultaneously and make these tests. AC motors can draw up to seven times the normal measurements as well as provide power. This level of flexibility operating current when first started. How long the motor will is making it easier to ensure that electronic products will work draw this current depends on the mechanical load and the under adverse conditions. -
Causes, Effects and Solutions for Poor Electrical Quality of Supply in Power Systems
QualityEskom of supply The means to safe, reliable and sustainable operations Causes, effects and solutions for poor electrical quality of supply in power systems Provision of electricity supply These effects via the network can, in turn, cause severe disturbances within businesses and other neighbouring electricity customers. Most renewable energy sources, process equipment and electro-technologies have elements of instant or In today’s global society the importance and necessity of electricity as part of continuous uncontrollability at various levels, which influence the quality of the everyday life can’t be underestimated. Electricity is the driving force behind power supply if not addressed via technical solutions or by means of responsible various fields of human activity: engineering, communication and transport, connection methods. entertainment, health and more importantly it fuels technological development and transformation. It is almost impossible to imagine life without electricity. What is quality of supply It is therefore important to have a look at electricity power quality. Wikipedia describes electric power quality as follows: “Electric power quality, or simply power The misconception is that good power quality means a perfect wave form and/ quality, involves voltage, frequency, and waveform. Good power quality can be or uninterruptable power supply. defined as a steady supply voltage that stays within the prescribed range, steady AC frequency close to the rated value, and smooth voltage curve waveform Both of these are desirable, but only accounts for two dimensions of the (resembles a pure sine wave). Without the proper power, an electrical device (or power supply. A power supply performance as defined in the aforementioned load) may malfunction, fail prematurely or not operate at all“. -
Power Quality Standards
Pacific Gas and Electric Company Power Quality Standards IEEE Standard 141-1993, Recommended Practice for Electric Power Distribution for Industrial Plants, aka the Red Book. A thorough analysis of basic electrical-system considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. IEEE Standard 142-1991, Recommended Practice for Grounding of Industrial and Commercial Power Systems, aka the Green Book. Presents a thorough investigation of the problems of grounding and the methods for solving these problems. There is a separate chapter for grounding sensitive equipment. IEEE Standard 242-1986, Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems, aka the Buff Book. Deals with the proper selection, application, and coordination of the components which constitute system protection for industrial plants and commercial buildings. IEEE Standard 446-1987, Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications, aka the Orange Book. Recommended engineering practices for the selection and application of emergency and standby power systems. It provides facility designers, operators and owners with guidelines for assuring uninterrupted power, virtually free of frequency excursions and voltage dips, surges, and transients. IEEE Standard 493-1997, Recommended Practice for Design of Reliable Industrial and Commercial Power Systems, aka the Gold Book. The fundamentals of reliability analysis as it applies to the planning and design of industrial and commercial electric power distribution systems are presented. -
Power Flow on AC Transmission Lines
Basics of Electricity Power Flow on AC Transmission Lines PJM State & Member Training Dept. PJM©2014 7/11/2013 Objectives • Describe the basic make-up and theory of an AC transmission line • Given the formula for real power and information, calculate real power flow on an AC transmission facility • Given the formula for reactive power and information, calculate reactive power flow on an AC transmission facility • Given voltage magnitudes and phase angle information between 2 busses, determine how real and reactive power will flow PJM©2014 7/11/2013 Introduction • Transmission lines are used to connect electric power sources to electric power loads. In general, transmission lines connect the system’s generators to it’s distribution substations. Transmission lines are also used to interconnect neighboring power systems. Since transmission power losses are proportional to the square of the load current, high voltages, from 115kV to 765kV, are used to minimize losses PJM©2014 7/11/2013 AC Power Flow Overview PJM©2014 7/11/2013 AC Power Flow Overview R XL VS VR 1/2X 1/2XC C • Different lines have different values for R, XL, and XC, depending on: • Length • Conductor spacing • Conductor cross-sectional area • XC is equally distributed along the line PJM©2014 7/11/2013 Resistance in AC Circuits • Resistance (R) is the property of a material that opposes current flow causing real power or watt losses due to I2R heating • Line resistance is dependent on: • Conductor material • Conductor cross-sectional area • Conductor length • In a purely resistive -
7 CONTROL and PROTECTION of HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System the Main Control And
CHAPTER –7 CONTROL AND PROTECTION OF HYDRO ELECTRIC STATION 7.1 Introduction 7.1.1 Control System The main control and automation system in a hydroelectric power plant are associated with start and stop sequence for the unit and optimum running control of power (real and reactive), voltage and frequency. Data acquisition and retrieval is used to cover such operations as relaying plant operating status, instantaneous system efficiency, or monthly plant factor, to the operators and managers. Type of control equipment and levels of control to be applied to a hydro plant are affected by such factors as number, size and type of turbine and generator. The control equipment for a hydro power plant include control circuits/logic, control devices, indication, instrumentation, protection and annunciation at the main control board and at the unit control board for generation, conversion and transmission operation including grid interconnected operation of hydro stations including small hydro stations. These features are necessary to provide operators with the facilities required for the control and supervision of the station’s major and auxiliary equipment. In the design of these features consideration must be given to the size and importance of the station with respect to other stations in the power system, location of the main control room with respect to the equipments to be controlled and all other station features which influence the control system. The control system of a power station plays an important role in the station’s rendering reliable service; this function should be kept in mind in the design of all control features. -
Reliability and Power Quality
ORNL/TM-2004/91 MEASUREMENT PRACTICES FOR RELIABILITY AND POWER QUALITY A TOOLKIT OF RELIABILITY MEASUREMENT PRACTICES June 2004 ORNL/TM-2004/91 MEASUREMENT PRACTICES FOR RELIABILITY AND POWER QUALITY A TOOLKIT OF RELIABILITY MEASUREMENT PRACTICES John D. Kueck and Brendan J. Kirby Oak Ridge National Laboratory Philip N. Overholt U.S. Department of Energy Lawrence C. Markel Sentech, Inc. June 2004 Prepared by Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6285 managed by UT-BATTELLE, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725 Contents Acknowledgments ...................................................................................................................... v 1. Introduction and Discussion of the Measurement “Toolkit” ....................................................... 1 2. Reliability: Definition and Discussion......................................................................................... 3 3. Power Quality: Definition and Discussion................................................................................... 4 4. Loss of Load Probability: A Historical Perspective..................................................................... 6 5. IEC Standards Description and Discussion ................................................................................. 8 6. Pitfalls in Methods for Reliability Index Calculation .................................................................. 9 7. Valuing Reliability...................................................................................................................... -
High Frequency AC Power Systems Huaxi Zheng University of South Carolina - Columbia
University of South Carolina Scholar Commons Theses and Dissertations 2014 High Frequency AC Power Systems Huaxi Zheng University of South Carolina - Columbia Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Zheng, H.(2014). High Frequency AC Power Systems. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/ 2684 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. HIGH FREQUENCY AC POWER SYSTEMS by Huaxi Zheng Bachelor of Science Beijing Jiaotong University, 2007 Master of Science Beijing Jiaotong University, 2009 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Electrical Engineering College of Engineering and Computing University of South Carolina 2014 Accepted by: Roger A. Dougal, Major Professor Herbert L. Ginn III, Committee Member Charles W. Brice, Committee Member Jamil A. Khan, Committee Member Lacy Ford, Vice Provost and Dean of Graduate Studies © Copyright by Huaxi Zheng, 2014 All Rights Reserved. ii DEDICATION This dissertation is dedicated to all of the people who have supported me through this process. I am especially grateful to my wife Yang Yue, whose unconditional love, unstoppable support, and hard work made this possible. You are the most encouraging, wonderful, creative, and thoughtful person I know and I am still amazed that I have the privilege of being your husband. I could not have accomplished any of these without you. -
The Basics of Electricity and Vehicle Lighting the Basics of Electricity and Lighting
$200.00 USD Series of Self-Study Guides from Grote Industries The Basics of Electricity and Vehicle Lighting The Basics of Electricity and Lighting How To Use This Book This self-study guide is divided into six sec- down to expose the first line of the second tions that cover topics from basic theory of question. The answer to the first question is electricity to choosing the right equipment. shown at the far right. Compare your answer It presents the information in text form sup- to the answer key. ported by illustrations, diagrams charts and Choose an answer to the second question. other graphics that highlight and explain key Slide the cover sheet down to expose the first points. Each section also includes a short quiz line of the third question and compare your to give the you a measure of your comprehen- answer to the answer key. sion. At the end of the guide is a final test that In the same manner, answer the balance of is designed to measure the learner’s overall the quiz questions. comprehension of the material. The final exam at the end of this guide To get the most value from this study guide, presents a second test of your knowledge of carefully read the text and study the illustra- the material. Be certain to use the quizzes and tions in each section. In some cases, you may final exam. In the case of the final exam, fold want to underline or highlight key information the answer sheet as directed, and mail to the for easier review and study later. -
Review on Laminated Busbars Used in High Frequency Inverters
E3S Web of Conferences 184, 01063 (2020) https://doi.org/10.1051/e3sconf/202018401063 ICMED 2020 Review on Laminated Busbars used in High Frequency Inverters Chirisavada Jagadeesh1,,Gajala Himavarsha2 and Bobba Phaneendra Babu1 1Department of Electrical Engineering, GRIET, Hyderabad, Telangana, India 2Department of Electrical Engineering, GRIET, Hyderabad, Telangana, India 3Department of Electrical Engineering, GRIET, Hyderabad, Telangana, India Abstract. Improvement in the efficiency and cost in the high frequency inverter will play a major role in its applications like electrical vehicles (EV). A high voltage IGBTs are used in inverters to bear the voltage peaks across the IGBT switch at the turning off period of switch. By decreasing the value of voltage peak, can reduce the voltage rating of IGBT switch, by which the system cost will decrease. Decreasing the value of voltage peak can be achieved by decreasing the inductance of the inverter circuit which includes turned on switch inductance, DC link capacitors inductance and connecting wires inductance. By replacing the connecting wires with a laminated busbar in an inverter, the inductance value of a connecting wires can be reduced. Laminated bus bar is a parallel conductor plates separated by a dielectric medium. Upper plate is considered as positive plate and lower plate is a negative plate. In this paper it gives a detailed information about laminated busbar with different designs, using different conductive materials, their calculated inductance in ANSYS 3D FEM software and concluding with suitable laminated busbar for high frequency inverter. l 1 = l s + l bc + l ca. (2) 1 Introduction Where, ls is a connecting wires inductance of the H- bridge inverter, lbc is an internal inductance of IGBT Laminated busbar is a device used to reduce or include the switch Q1 of an H- bridge inverter and lca is an internal inductance in the power electronic circuits.