The Conservation Status of Temperate Grasslands in Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Conservation Status of Temperate Grasslands in Southern Africa Feature The conservation status of temperate grasslands in southern Africa C CARBUTT 1, M TAU 2, A STEPHENS 2 AND B ESCOTT 1 1 Scientific Services, Ezemvelo KZN Wildlife, Cascades 2 National Grassland Biodiversity Programme, South African National Biodiversity Institute, Pretoria E mail: [email protected] Introduction The effect of this gradient, enhanced by the east- he Grassland Biome (25° S - 33° S; 24° E - 31° west moisture gradient across the subcontinent, is TE) of southern Africa (here defined in the narrow- believed to have determined the limits of grassland est sense as South Africa, Lesotho and Swaziland) on our subcontinent (Mucina and Rutherford 2006). covers an area of c. 360,589 km2, straddling the high central plateau of South Africa (‘highveld’), the moun- The Grassland Biome is represented by four biore- tainous areas of Lesotho, and the high-lying ground gions (Drakensberg Grassland; Sub-escarpment of the eastern seaboard (uplands or sub-escarpment Grassland; Dry Highveld Grassland; Mesic Highveld of KwaZulu-Natal, Eastern Cape, and Mpumalanga). Grassland; Figure 2) and 72 vegetation types (units), The Grassland Biome (Figure 1), one of nine biomes the latter defined by Mucina and Rutherford (2006) in southern Africa, accounts for c. 28% of the terres- according to similar vegetation structure, macro-cli- trial surface area of southern Africa, and is therefore mate (mainly the amount of summer rainfall, minimum the second largest biome after the Savanna Biome winter temperatures and frost), and a similar dis- (Mucina and Rutherford 2006). Topographically, the turbance regime (frequent fire and grazing). The landscape of the Grassland Biome ranges from flat or Grassland Biome accounts for three centres of plant undulating with hills and valleys, to rugged mountain endemism (Drakensberg Alpine Centre; Wolkberg escarpment. Elevation ranges from 300 m to 3482 Centre; Midlands Putative Centre) whilst a further m a.s.l. (Thabana Ntlenyana - the highest mountain three centres of plant endemism are shared with the in southern Africa). Winters are generally cold and Savanna Biome (Barberton, Sekhukhune and Sout- dry, with frequent frosts and snow falls in the higher pansberg Centres; Mucina and Rutherford 2006). reaches. Rainfall varies spatially from 400 mm to The Grassland Biome also accounts for three World 2,500 mm per annum, corresponding to the MAR in Heritage Sites (uKhahlamba Drakensberg; Cradle of other parts of the world where similar vegetation is Humankind and Vredefort Dome). found (O’Connor and Bredenkamp 1997). Rainfall is strongly seasonal (summer) and the growing season The latest delineation of the Grassland Biome lasts approximately half the year (Mucina and Ru- (Mucina and Rutherford 2006) resulted in the rec- therford 2006). The development of the Grassland ognition of a new biome on the eastern seaboard, Biome is thought to be linked to global cooling namely the Indian Ocean Coastal Belt Biome, which during the late tertiary, accompanied by continental now includes the humid sub-tropical grasslands and uplift that began in the Early Miocene and culminat- the edaphic grasslands of Maputland and Pondland ed in significant uplift of up to 900 m in some parts previously housed in the former Grassland Biome of the subcontinent during the Pliocene. This uplift (see Rutherford and Westfall 1986, Low and Rebelo moved a core area of the subcontinent into a cool, 1996). Furthermore, the Ngongoni grasslands are high-altitude climate, more suitable for grasslands now part of the Savanna Biome, the thinking being than savannas. Uplift towards the west was less pro- that a subtropical vegetation type is best contained nounced, resulting in the sloping east-west gradient. within a subtropical biome. The result therefore is February 2011 | Vol 11 No.1 www.grassland.org.za | The GRASSLAND SOCIETY of SOUTHERN AFRICA | GRASSROOTS 17 Feature conservation status of temperate grasslands that the grasslands of the currently defined Grass- Methods land Biome are all strictly temperate; the Grassland The conservation assessment of temperate grass- Biome and the temperate grasslands of southern lands in southern Africa was based on a GIS-analysis Africa are synonymous and may therefore be referred using ArcView GIS 3.2. Areas were calculated using to interchangeably. data in the WGS84 datum Lo29 projection. Levels of transformation were based on the National Land The temperate grasslands of southern Africa Cover (NLC) 2000 coverage (satellite imagery). The are structurally fairly conservative and uniform transformed areas do not necessarily lie exclusively (O’Connor and Bredenkamp 1997); they comprise outside of protected areas (PAs). Protection levels single-layered herbaceous communities of tufted were derived from the formal PA system (i.e. all leg- graminoids (predominantly perennial grasses of the islated, formal state and statutory PAs), according to Family Poaceae), as well as a forb component of the National Environmental Management: Protected mostly long-lived perennials that re-appear on an Areas Act 57 of 2003. annual basis from significant below-ground biomass (corms, rhizomes, tubers or bulbs) until the end of Results their life-span but are heavily reliant on the produc- A meager 2.04% of the region’s temperate grasslands tion and establishment of viable seed for recruitment. are conserved within PAs (Table 1). This level of pro- Biomass is mostly attributed to the grass component tection is less than half of the global total (estimated (Family Poaceae), whilst species richness is attribut- between c. 4.6% and 5.5%) for the World Temperate ed mostly to the forb component. Woody plants are Grassland Biome (see Chape et al. 2003, Peart 2008). rare (usually low to medium-sized shrubs) or absent This also falls short of the IUCN target of 10% formal (O’Connor and Bredenkamp 1997), and are confined protection by 2014, and at a local (national) scale, to specific habitats serving as fire refugia (rocky hill- far short of the 12% target (or an additional ± 42,500 tops, drainage lines etc.). Grassy or Afromontane km 2) by 2028 set as part of South Africa’s National ‘fynbos’ (heathland-like vegetation) occurs at the Protected Area Expansion Strategy (NPAES) (SANBI higher elevations and in higher rainfall areas, often and DEAT 2008). The poor levels of protection often on steep, highly leached slopes protected from fire mean that temperate grasslands account for most (Mucina and Rutherford 2006). C 4 grasses dominate of the high priority biodiversity areas for PA expan- most of the Biome, except at the higher elevations sion, which in KwaZulu-Natal is estimated to be c. of the Drakensberg Alpine Centre (i.e. the Maloti- 46% (Carbutt and Escott 2010). An assessment of Drakensberg Mtns), where C3 grasses predominate conservation priorities in the Grassland Biome iden- (Low and Rebelo 1996). Canopy cover of the grass- tified some 36.7% of the biome being important for lands is moisture-dependent and decreases with biodiversity conservation (Reyers et al. 2005). Some low MAR. Cover is also influenced by intensity and 33% of southern Africa’s temperate grasslands are type of grazing, as well as by fire (seasonality, in- already irreversibly transformed (Table 1). tensity) and by minimum temperature (implications for frosts). The temperate grasslands of southern All broad temperate grassland units (bioregions) Africa are subdivided into moist (dependent on fire are below target, although the Drakensberg Grass- for maintaining structure) and dry types (not depen- land Bioregion is the most protected (Table 2) princi- dent on fire for maintaining structure) (Mucina and pally as a result of the Maloti Drakensberg Transfron- Rutherford 2006). tier Conservation Area (comprising the uKhahlamba Drakensberg Park World Heritage Site in South Africa The aim of this study was to assess the conser- and Sehlabathebe National Park in Lesotho). Priority vation status of temperate grasslands in southern should be given to the sub-escarpment grasslands, Africa, discuss possible reasons for the poor level listed in the NPAES as being the only bioregion of of protection and high degree of transformation, and the Grassland Biome requiring ‘critically urgent’ at- mention the major current interventions aimed at im- tention (SANBI and DEAT 2008), followed by the Dry- proving levels of protection. and Mesic Highveld Grassland Bioregions (requiring 18 GRASSROOTS | The GRASSLAND SOCIETY of SOUTHERN AFRICA | www.grassland.org.za February 2011 | Vol 11 No.1 conservation status of temperate grasslands Feature Table 1. The conservation status of temperate grasslands in southern Africa. ‘very urgent’ attention). Ironically, the bioregions of its high priority biodiversity located within produc- with the most PAs (e.g. Mesic Highveld Grasslands; tion (‘working’) landscapes. This is a worldwide trend Sub-escarpment Grasslands) conserve some of the because grasslands are highly amenable for settle- smallest areas per bioregion, highlighting the futility ment and use, having provided for man’s needs for of small reserves in fulfilling PA targets (although are centuries. As a result, temperate grasslands are now often essential in fulfilling biodiversity targets). considered the most altered terrestrial biome on the planet (Henwood 2006). The low level of protection (c. 2%) is also slight- ly overestimated due to the prevalence of forest The primary drivers of transformation by agri- patches within these grassland areas, reducing the culture in the Grassland Biome
Recommended publications
  • Meso-Archaean and Palaeo-Proterozoic Sedimentary Sequence Stratigraphy of the Kaapvaal Craton
    Marine and Petroleum Geology 33 (2012) 92e116 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Meso-Archaean and Palaeo-Proterozoic sedimentary sequence stratigraphy of the Kaapvaal Craton Adam J. Bumby a,*, Patrick G. Eriksson a, Octavian Catuneanu b, David R. Nelson c, Martin J. Rigby a,1 a Department of Geology, University of Pretoria, Pretoria 0002, South Africa b Department of Earth and Atmospheric Sciences, University of Alberta, Canada c SIMS Laboratory, School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, NSW 2753, Australia article info abstract Article history: The Kaapvaal Craton hosts a number of Precambrian sedimentary successions which were deposited Received 31 August 2010 between 3105 Ma (Dominion Group) and 1700 Ma (Waterberg Group) Although younger Precambrian Received in revised form sedimentary sequences outcrop within southern Africa, they are restricted either to the margins of the 27 September 2011 Kaapvaal Craton, or are underlain by orogenic belts off the edge of the craton. The basins considered in Accepted 30 September 2011 this work are those which host the Witwatersrand and Pongola, Ventersdorp, Transvaal and Waterberg Available online 8 October 2011 strata. Many of these basins can be considered to have formed as a response to reactivation along lineaments, which had initially formed by accretion processes during the amalgamation of the craton Keywords: Kaapvaal during the Mid-Archaean. Faulting along these lineaments controlled sedimentation either directly by Witwatersrand controlling the basin margins, or indirectly by controlling the sediment source areas. Other basins are Ventersdorp likely to be more controlled by thermal affects associated with mantle plumes.
    [Show full text]
  • The Geology of the Olifants River Area, Transvaal
    REPUBLIC OF SOUTH AFRICA REPUBLIEK VANSUID-AFRIKA· DEPARTMENT OF MINES DEPARTEMENT VAN MYNWESE GEOLOGICAL SURVEY GEOLOGIESE OPNAME THE GEOLOGY OF THE OLIFANTS RIVER AREA, TRANSVAAL AN EXPLANATION OF SHEETS 2429B (CHUNIESPOORT) AND 2430A (WOLKBERG) by J. S. I. Sehwellnus, D.Se., L. N. J. Engelbrecht, B.Sc., F. J. Coertze, B.Sc. (Hons.), H. D. Russell, B.Sc., S. J. Malherbe, B.Sc. (Hons.), D. P. van Rooyen, B.Sc., and R. Cooke, B.Sc. Met 'n opsomming in Afrikaans onder die opskrif: DIE GEOLOGIE VAN DIE GEBIED OLIFANTSRIVIER, TRANSVAAL COPYRIGHT RESERVED/KOPIEREG VOORBEHOU (1962) Printed by and obtainable (rom Gedruk deur en verkrygbaar the Government Printer, B(ls~ van die Staatsdrukker, Bosman­ man Street, Pretoria. straat, Pretoria. Geological map in colour on a Geologiese kaart in kleur op 'n scale of I: 125,000 obtainable skaal van I: 125.000 apart ver­ separately at the price of 60c. krygbaar teen die prys van 60c. & .r.::-~ h'd'~, '!!~l p,'-' r\ f: ~ . ~) t,~ i"'-, i CONTENTS PAGE ABSTRACT ........................ ' ••• no ..........' ........" ... • • • • • • • • •• 1 I. INTRODUCTION........ •.••••••••.••••••••.....••...•.•..••••..• 3 II. PHYSIOGRAPHY................................................ 4 A. ToPOGRAPHY..... • • . • • . • . • • . • • • . • • . • . • • • • • . • • • • • . • • • • • • ... 4 B. DRAINAGE.................................................... 6 C. CLIMATE ..........•.••••.•••••.••....................... ,.... 7 D. VEGETATION .••••.•••••.•.........•..... , ..............•... , . 7 III. GEOLOGICAL FORMATIONS ....................
    [Show full text]
  • Maloti-Drakensberg Park, Lesotho & South Africa
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Maloti-Drakensberg Park - 2020 Conservation Outlook Assessment Maloti-Drakensberg Park 2020 Conservation Outlook Assessment SITE INFORMATION Country: Lesotho, South Africa Inscribed in: 2000 Criteria: (i) (iii) (vii) (x) The Maloti-Drakensberg Park is a transboundary site composed of the uKhahlamba Drakensberg National Park in South Africa and the Sehlathebe National Park in Lesotho. The site has exceptional natural beauty in its soaring basaltic buttresses, incisive dramatic cutbacks, and golden sandstone ramparts as well as visually spectacular sculptured arches, caves, cliffs, pillars and rock pools. The site's diversity of habitats protects a high level of endemic and globally important plants. The site harbors endangered species such as the Cape vulture (Gyps coprotheres) and the bearded vulture (Gypaetus barbatus). Lesotho’s Sehlabathebe National Park also harbors the Maloti minnow (Pseudobarbus quathlambae), a critically endangered fish species only found in this park. This spectacular natural site contains many caves and rock-shelters with the largest and most concentrated group of paintings in Africa south of the Sahara. They represent the spiritual life of the San people, who lived in this area over a period of 4,000 years. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 SIGNIFICANT CONCERN The conservation outlook for Maloti-Drakensberg Park is of significant concern. The EKZNW management staff are highly dedicated and experienced and there is also significant appreciation for the values of the Maloti Drakensberg by communities living nearby as evidenced, for example, by the vehemently strong opposition to the possibility of oil and gas exploration in the area.
    [Show full text]
  • Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
    Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action
    [Show full text]
  • Sequence Stratigraphic Development of the Neoarchean Transvaal Carbonate Platform, Kaapvaal Craton, South Africa Dawn Y
    DAWN Y. SUMNER AND NICOLAS J. BEUKES 11 Sequence Stratigraphic Development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa Dawn Y. Sumner Department of Geology, University of California 1 Shields Ave, Davis, CA 95616 USA e-mail: [email protected] Nicolas J. Beukes Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2000 South Africa e-mail: [email protected] © 2006 March Geological Society of South Africa ABSTRACT The ~2.67 to ~2.46 Ga lower Transvaal Supergroup, South Africa, consists of a mixed siliciclastic-carbonate ramp that grades upward into an extensive carbonate platform, overlain by deep subtidal banded iron-formation. It is composed of 14 third-order sequences that develop from a mixed siliciclastic-carbonate ramp to a steepened margin followed by a rimmed margin that separated lagoonal environments from the open ocean. Drowning of the platform coincided with deposition of banded iron-formation across the Kaapvaal Craton. The geometry and stacking of these sequences are consistent with more recent patterns of carbonate accumulation, demonstrating that Neoarchean carbonate accumulation responded to subsidence, sea level change, and carbonate production similarly to Proterozoic and Phanerozoic platforms. The similarity of carbonate platform geometry through time, even with significant changes in dominant biota, demonstrates that rimmed margins are localized primarily by physiochemical conditions rather than growth dynamics of specific organisms. Stratigraphic patterns during deposition of the Schmidtsdrift and Campbellrand-Malmani subgroups are most consistent with variable thinning of the Kaapvaal Craton during extrusion of the ~2.7 Ga Ventersdorp lavas. Although depositional patterns are consistent with rifting of the western margin of the Kaapvaal Craton during this time, a rift-to-drift transition is not required to explain subsidence.
    [Show full text]
  • Corrosion Map of South Africa's Macro Atmosphere
    Corrosion map of South Africa’s macro atmosphere AUTHORS: Darelle T. Janse van Rensburg1,2 The first atmospheric corrosion map of South Africa, produced by Callaghan in 1991, has become outdated, Lesley A. Cornish1 because it primarily focuses on the corrosivity of coastal environments, with little differentiation given Josias van der Merwe1 concerning South Africa’s inland locations. To address this problem, a study was undertaken to develop AFFILIATIONS: a new corrosion map of the country, with the emphasis placed on providing greater detail concerning 1School of Chemical and Metallurgical South Africa’s inland regions. Here we present this new corrosion map of South Africa’s macro atmosphere, Engineering and DST-NRF Centre of Excellence in Strong Materials, based on 12-month corrosion rates of mild steel at more than 100 sites throughout the country. Assimilations University of the Witwatersrand, and statistical analyses of the data (published, unpublished and new) show that the variability in the corrosion Johannesburg, South Africa rate of mild steel decreases significantly moving inland. Accordingly, the average first-year corrosion rate of 2Orytech (Pty) Ltd, Roodepoort, South Africa mild steel at the inland sites (at all corrosion monitoring spots located more than 30 km away from the ocean) measured 21±12 µm/a [95% CI: 18–23 µm/a]. The minimum inland figure was about 1.3 µm/a (recorded CORRESPONDENCE TO: at Droërivier in the Central Karoo) and the maxima were approximately 51 µm/a and 50 µm/a in the industrial Darelle Janse van Rensburg hearts of Germiston (Gauteng) and Sasolburg (Free State), respectively.
    [Show full text]
  • Article ISSN 1179-3163 (Online Edition)
    Phytotaxa 408 (1): 069–076 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.408.1.5 Gymnosporia sekhukhuniensis (Celastraceae), a new species from South Africa MARIE JORDAAN1,2 & ABRAHAM E. VAN WYK1,2* 1National Herbarium, South African National Biodiversity Institute, Private Bag X101, Pretoria, 0001 South Africa. 2H.G.W.J. Schweickerdt Herbarium, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002 South Africa. *Author for correspondence. E-mail: [email protected] Abstract Gymnosporia sekhukhuniensis, a new species from north-eastern South Africa, is described, illustrated, mapped, and compared with closely related species. It belongs to Gymnosporia sect. Buxifoliae, more specifically Group 1, the members of which are characterized by the capsules being (2)3(4)-valved, rugose or verrucose, and the seeds partially covered by the aril. The new species has a restricted distribution range and is near-endemic to the Sekhukhuneland Centre of Endemism. This biogeographical region rich in restricted-range plants is more or less congruent with surface outcrops of mafic and ultramafic igneous rocks belonging to the Rustenburg Layered Suite of the eastern Bushveld Complex. The range of the new species shows marginal intrusion into the far northern part of the nearby Wolkberg Centre of Endemism, where it is associated with dolomites of the Malmani Subgroup. Gymnosporia sekhukhuniensis is a suffrutex mainly associated with rocky outcrops in open savannah. Diagnostic characters include its dwarf habit (up to 1.6 m tall), capsules that are relatively small (5–8 mm long), woody, scaly-rugose, with hard pointed apices, and leaves that are very laxly arranged on the stems, with some often present on the thorns.
    [Show full text]
  • Eastern Cape Biodiversity Conservation Plan Technical Report
    EASTERN CAPE BIODIVERSITY CONSERVATION PLAN TECHNICAL REPORT Derek Berliner & Philip Desmet “Mainstreaming Biodiversity in Land Use Decision- Making in the Eastern Cape Province” DWAF Project No 2005-012 1 August 2007 Revision 1 (5 September 2005) Eastern Cape Biodiversity Conservation Plan Technical Report I Photo by Barry Clark Report Title; Eastern Cape Biodiversity Conservation Plan Technical Report. Date: 1 August 2007 Authors: Derek Berliner & Dr Phillip Desmet Contact details; Derek Berliner, Eco-logic Consulting, email: [email protected]. cell: 083 236 7155 Dr Phillip Desmet, email: [email protected], cell: 082 352 2955 Client: Department of Water Affairs and Forestry Principle funding agent: Development Bank of South Africa Citation: Berliner D. & Desmet P. (2007) Eastern Cape Biodiversity Conservation Plan: Technical Report. Department of Water Affairs and Forestry Project No 2005-012, Pretoria. 1 August 2007 (Unless otherwise quoted, intellectual property rights for the conceptual content of this report reside with the above authors) Eastern Cape Biodiversity Conservation Plan Technical Report II Acknowledgements The assistance of a large number of people has been essential to the success of this project. In particular, the authors would like to thank the funders of this project, the DBSA and DWAF, Nkosi Quvile (DWAF), Phumla Mzazi (DEDEA), Mandy Driver (SANBI), Julie Clarke (DBSA), Graeme Harrison (formerly DWAF) and members of the Project Steering Committee and Eastern Cape Implementation Committee for Bioregional Programmes. Our thanks also go to Ally Ashwell, John Allwood, Dave Balfour, Noluthando Bam, Rick Bernard, Roger Bills, Anton Bok, Andre Boshoff, Bill Branch, Mandy Cadman, Jim Cambray, Barry Clark, Willem Coetzer, P.
    [Show full text]
  • A New Species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 72 (2006) 551–554 www.elsevier.com/locate/sajb A new species of Disa (Orchidaceae) from Mpumalanga, South Africa ⁎ D. McMurtry a, , T.J. Edwards b, B. Bytebier c a Whyte Thorne, P O Box 218, Carino 1204, South Africa b School of Biological and Conservation Sciences, University of KwaZulu–Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c Biochemistry Department, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa Received 10 November 2005; accepted 8 March 2006 Abstract A new species, Disa vigilans D. McMurtry and T.J. Edwards, is described from the Mpumalanga Escarpment. The species is a member of the Disa Section Stenocarpa Lindl. Its alliances are discussed in terms of its morphology and its phylogenetic placement is elucidated using molecular data. D. vigilans has previously been considered as an anomalous form of Disa montana Sond. but is more closely allied to Disa amoena H.P. Linder. © 2006 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Disa; Draensberg endemic; New species; Orchidaceae; Section Stenocarpae; South Africa; Mpumalanga province 1. Introduction with 3 main veins, margins thickened and translucent. Inflorescence lax, cylindrical, 40–75 mm long; bracts light green suffused pinkish Disa is the largest genus of Orchidaceae in southern Africa (162 with darker green veins, linear-lanceolate, acuminate, 11–29×2– spp.) and has been the focus of considerable taxonomic investigation 3 mm, scarious at anthesis. Flowers white suffused with carmine- (Linder, 1981a,b, 1986; Linder and Kurzweil, 1994).
    [Show full text]
  • Physical Map Unit
    AfricaAnnabelle ate apples in the purple poppies. © 2015Physical Thomas Teaching Tools Map Annabelle ate apples in the purple poppies. © 2015 Thomas TeachingUnit Tools Thanks for Your Purchase! I hope you and your students enjoy this product. If you have any questions, you may contact me at [email protected]. © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Terms of Use This teaching resource includes one single-teacher classroom license. Photocopying this copyrighted product is permissible only for one teacher for single classroom use and for teaching purposes only. Duplication of this resource, in whole or in part, for other individuals, teachers, schools, institutions, or for commercial use is strictly forbidden without written permission from the author. This product may not be distributed, posted, stored, displayed, or shared electronically, digitally, or otherwise, without written permission of the author, MandyAnnabelle Thomas. ate Copying apples any in thepart purple of this poppies. product and placing it on the internet in any form (even a personal/classroom website) is strictly forbidden© 2015 Thomas and is a Teaching violation Toolsof the Digital Millennium Copyright Act (DMCA). You may purchase additional licenses at a reduced price on the “My Purchases”Annabelle page of TpTate ifapples you wish in the to purpleshare withpoppies. your fellow teachers, department, or school. If you have any questions, you may contact me© 2015 at [email protected] Thomas Teaching Tools . Thanks for downloading this product! I hope you and your students enjoy this resource. Feedback is greatly appreciated. Please fee free to contact me if you have any questions. My TpT Store: https://www.teacherspayteachers.com/Store/Tho mas-Teaching-Tools © 2015 Thomas Teaching Tools © 2015 Thomas Teaching Tools Teaching Notes Planning Suggestions This map unit is a great addition to any study of Africa.
    [Show full text]
  • A Review of the Impacts and Opportunities for African Urban Dragonflies
    insects Review A Review of the Impacts and Opportunities for African Urban Dragonflies Charl Deacon * and Michael J. Samways Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Stellenbosch 7600, South Africa; [email protected] * Correspondence: [email protected] Simple Summary: The expansion of urban areas in combination with climate change places great pressure on species found in freshwater habitats. Dragonflies are iconic freshwater organisms due to their large body sizes and striking coloration. They have been widely used to indicate the impacts of natural and human-mediated activities on freshwater communities, while also indicating the mitigation measures required to ensure their conservation. Here, we review the major threats to dragonflies in southern Africa, specifically those in urban areas. We also provide information on effective mitigation measures to protect dragonflies and other aquatic insects in urban spaces. Using three densely populated areas as case studies, we highlight some of the greatest challenges for dragonflies in South Africa. More importantly, we give a summary of current mitigation measures which have maintained dragonflies in urban spaces. In addition to these mitigation measures, public involvement and raising awareness contribute greatly to the common cause of protecting dragonflies around us. Abstract: Urban settlements range from small villages in rural areas to large metropoles with densely Citation: Deacon, C.; Samways, M.J. packed infrastructures. Urbanization presents many challenges to the maintenance of freshwater A Review of the Impacts and quality and conservation of freshwater biota, especially in Africa. There are many opportunities Opportunities for African Urban as well, particularly by fostering contributions from citizen scientists.
    [Show full text]
  • Effects of Atmospheric CO2 Variability of the Past 800 Kyr on the Biomes of Southeast Africa
    Clim. Past, 15, 1083–1097, 2019 https://doi.org/10.5194/cp-15-1083-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa Lydie M. Dupont1, Thibaut Caley2, and Isla S. Castañeda3 1MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany 2EPOC, UMR 5805, CNRS, University of Bordeaux, Pessac, France 3University of Massachusetts Amherst, Department of Geosciences, Amherst, MA, USA Correspondence: Lydie M. Dupont ([email protected]) Received: 6 February 2019 – Discussion started: 20 February 2019 Revised: 10 May 2019 – Accepted: 23 May 2019 – Published: 19 June 2019 Abstract. Very little is known about the impact of atmo- 1 Introduction spheric carbon dioxide pressure (pCO2) on the shaping of biomes. The development of pCO2 throughout the Brun- Understanding the role of atmospheric carbon dioxide pres- hes Chron may be considered a natural experiment to eluci- sure (pCO2) is paramount for the interpretation of the of date relationships between vegetation and pCO2. While the the palaeovegetation record. The effects of low pCO2 on glacial periods show low to very low values (∼ 220 to ∼ glacial vegetation have been discussed in a number of stud- 190 ppmv, respectively), the pCO2 levels of the interglacial ies (Ehleringer et al., 1997; Jolly and Haxeltine, 1997; Cowl- periods vary from intermediate to relatively high (∼ 250 to ing and Sykes, 1999; Prentice and Harrison, 2009; Prentice more than 270 ppmv, respectively). To study the influence of et al., 2017) predicting that glacial increases in C4 vegeta- pCO2 on the Pleistocene development of SE African vege- tion favoured by low atmospheric CO2 would have opened tation, we used the pollen record of a marine core (MD96- the landscape and lowered the tree line.
    [Show full text]