Institutionen För Datavetenskap Department of Computer and Information Science
Total Page:16
File Type:pdf, Size:1020Kb
Institutionen för datavetenskap Department of Computer and Information Science Final Thesis Autonomous Indoor Navigation System for Mobile Robots by Antymos Dag LIU-IDA/LITH-EX-G--16/004--SE 2016-06-17 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Linköping University Department of Computer and Information Science Final Thesis Autonomous Indoor Navigation System for Mobile Robots by Antymos Dag LIU-IDA/LITH-EX-G--16/004--SE 2016-06-17 Supervisor: Mikael Asplund Examiner: Mikael Asplund Abstract With an increasing need for greater traffic safety, there is an increasing demand for means by which solutions to the traffic safety problem can be studied. The purpose of this thesis is to investigate the feasibility of using an autonomous indoor navigation system as a component in a demonstration system for studying cooperative vehicular scenarios. Our method involves developing and evaluating such a navigation system. Our navigation system uses a pre- existing localization system based on passive RFID, odometry and a particle filter. The localization system is used to estimate the robot pose, which is used to calculate a trajectory to the goal. A control system with a feedback loop is used to control the robot actuators and to drive the robot to the goal. The results of our evaluation tests show that the system generally fulfills the performance requirements stated for the tests. There is however some uncertainty about the consistency of its performance. Results did not indicate that this was caused by the choice of localization techniques. The conclusion is that an autonomous navigation system using the aforementioned localization techniques is plausible for use in a demonstration system. However, we suggest that the system is further tested and evaluated before it is used with applications where accuracy is prioritized. Acknowledgments I wish to express my gratitude to both my examiner Mikael Asplund as well as Simin Nadjm- Tehrani for giving me the opportunity to work on this thesis. They have both trusted me enough to let me work with the resources of the Real-Time Systems Laboratory and I am grateful for that. I would also like to thank Mikael for all the time he has invested in making the thesis work possible and for the many discussions we have had along the way. Furthermore, I am grateful to have been shown hospitality within RTSLAB. I want to thank my family and friends for their patience and support throughout this time. They have motivated me to keep working when I needed it the most. I could not have finished this without them. My sincere thanks, Antymos Dag Contents 1 Introduction ....................................................................................................................... 1 1.1 Motivation ................................................................................................................... 1 1.2 Purpose ........................................................................................................................ 2 1.3 Problem Statement ....................................................................................................... 3 1.4 Methodology ................................................................................................................ 3 1.5 Delimitations and Requirements ................................................................................. 4 2 Background ....................................................................................................................... 5 2.1 Related Work ............................................................................................................... 5 2.2 Robot Platform ............................................................................................................ 6 2.2.1 iRobot Create ........................................................................................................ 7 2.2.2 RFID ..................................................................................................................... 8 2.3 Search and Rescue System .......................................................................................... 8 2.3.1 Software Structure ................................................................................................ 9 2.3.2 Tasks and Scheduling ......................................................................................... 10 2.4 Indoor Localization .................................................................................................... 11 2.4.1 Odometer Based Localization ............................................................................ 11 2.4.2 RFID Based Localization ................................................................................... 11 2.4.3 Sensor Fusion and Particle Filter Based Localization ........................................ 12 3 Theory of Automatic Control ........................................................................................ 13 3.1 Control Systems ......................................................................................................... 13 3.1.1 Non-Feedback Control Systems/Open Loop Control ........................................ 13 3.1.2 Feedback Control Systems/Closed Loop Control .............................................. 14 3.2 Controllers ................................................................................................................. 14 3.2.1 On-Off Controllers ............................................................................................. 15 3.2.2 PID Controllers .................................................................................................. 15 4 Navigation System ........................................................................................................... 17 4.1 Technology Choices and Design Decisions .............................................................. 17 4.1.1 Choice of Driving Technique ............................................................................. 17 4.1.2 Design Choices ................................................................................................... 19 4.2 Overview ................................................................................................................... 21 4.3 Orientation Estimation ............................................................................................... 22 4.4 Motion Planning Algorithm ....................................................................................... 23 4.5 Control System .......................................................................................................... 24 4.6 Guidance System ....................................................................................................... 25 4.7 Path Planner ............................................................................................................... 27 5 Performance Evaluation ................................................................................................. 28 5.1 Choice of Evaluation Method .................................................................................... 28 5.2 Evaluation Setup ........................................................................................................ 28 5.2.1 Robot Setup ........................................................................................................ 29 5.2.2 Visualization Setup ............................................................................................ 29 5.2.3 Test Area and Path ............................................................................................. 29 5.3 Evaluation Tests ........................................................................................................ 30 5.4 Performance Metrics .................................................................................................. 31 5.4.1 Dimension Metrics ............................................................................................. 31 5.4.2 Smoothness Metrics ........................................................................................... 32 5.5 Performance Criteria .................................................................................................. 32 5.5.1 Dimension Criteria ............................................................................................. 33 5.5.2 Smoothness Criteria ........................................................................................... 33 5.6 Results ....................................................................................................................... 33 6 Discussion ......................................................................................................................... 35 6.1 Evaluation Results ..................................................................................................... 35 6.2 Methodology and Evaluation Method ....................................................................... 36 6.3 Ethical and Societal Implications .............................................................................. 37 6.4 Source Criticism ........................................................................................................ 38 7 Conclusions and Future Work ....................................................................................... 39 7.1 Conclusions ..............................................................................................................