Simulated 'Frankenfish Brain- Swaps'

Total Page:16

File Type:pdf, Size:1020Kb

Simulated 'Frankenfish Brain- Swaps' IN CONCLUSION How can different-sized people perform identical fine-motor tasks equally well, such as hitting a baseball or sending a text? In a study of the connection between brain, body and locomotor movement, researchers simulate “brain swaps” in fish to find out. swimming performance. ribbon fin could be used as a proxy of the SIMULATED Researchers say the findings provide neural controller applied by the central ‘FRANKENFISH BRAIN- new evidence that animals can lean on nervous system,” explained Ismail Uyanik, feedback from the senses to aid the assistant professor of engineering at SWAPS’ REVEAL interplay of the brain, body and stimulus Hacettepe University, Turkey, and former SENSES CONTROL from their external environment in postdoctoral researcher involved in the guiding locomotor movement, rather than study at NJIT. “The data allowed us to BODY MOVEMENT depending on precise tuning of brain estimate the locomotor dynamics and to circuits to the mechanics of the body’s calculate the controllers that the central lenty of fictional works like Mary muscles and skeleton. nervous system applies during the control Shelly’s Frankenstein have explored “What this study shows is the deep of this behavior.” the idea of swapping out a brain role of sensory feedback in everything “We logged nearly 40,000 ribbon-fin Pfrom one individual and transferring it into we do,” said Eric Fortune, professor at movements per fish during their shuttling a completely different body. However, a NJIT’s Department of Biological Sciences to get the data we ended up using to team of biologists and engineers has now and author of the study, funded by the help build models of each fish’s locomotor used a variation of the sci-fi concept, via National Science Foundation. “People plant and controller,” added Fortune. computer simulation, to explore a core have been trying to figure out how the With their models, the team began brain-body question. animal movement works forever. It turns computationally swapping controllers and How can two people with vastly out that swapping brains of these fishes is plants between the fish, observing that the different-sized limbs and muscles perform a great way to address this fundamental brain swaps had virtually no effect on the identical fine-motor tasks equally well, question and gain a better understanding models’ simulated swimming behaviors such as hitting a baseball or sending a for how we might control our bodies.” when they included sensory feedback text? Is it a unique tuning between our Using experimental tanks outfitted data. However, without the sensory brain and nervous system with the rest with high-res cameras in the lab, the feedback data included in the models, the of our body that controls these complex researchers tracked the subtle movements fishes’ swimming performance dropped off motions, or is feedback from our senses of three glass knifefish of different shapes completely. “Essentially, sensory feedback taking charge? and sizes as they shuttled back and rescues them,” said Fortune. In a new study featured in the journal forth within their tunnel-like refuges — a The team says the findings could also eLife, researchers have computationally common behavior among electric fish that help inform engineers in the design of modeled the various brains and bodies includes rapid and nuanced adjustments future robotics and sensor technology. of a species of weakly electric fish, the to produce sensory information that the “We want to be able to make robots glass knifefish (Eigenmannia virescens), fish need for keeping a fixed position that perform as well as humans [in to successfully simulate “fish brain within the safety of their hidden habitats, controlling body movement], but we transplants” and investigate. also known as station-keeping. need better control algorithms, and that’s The team’s simulations, which involved The team collected various sensory what we are getting at in these studies,” swapping models of the fishes’ information and kinematic measurements linked said Fortune. n processing and motor systems, revealed to the exercise — most notably, the that after undergoing a sudden jump into micromovements of the fishes’ ribbon-like Author: Jesse Jenkins is an NJIT Magazine the different body of their tank-mate, the fins that are critical to locomotor function contributing writer. “Frankenfish” quickly compensated for during shuttling activity — and applied the brain-body mismatch by heavily relying the data to create computer models of the on sensory feedback to resume control brain and body of each fish. of fine-motor movements required for “We showed that movements of the .
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Fauna Atingida Por Acidentes Ambientais Envolvendo Produtos Químicos
    Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências do Solo Curso de Especialização em Gerenciamento Ambiental Sérgio Greif FAUNA ATINGIDA POR ACIDENTES AMBIENTAIS ENVOLVENDO PRODUTOS QUÍMICOS Orientadora: Biól. Iris Regina Fernandes Poffo (PhD.) São Paulo 2017 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências do Solo Curso de Especialização em Gerenciamento Ambiental Sérgio Greif FAUNA ATINGIDA POR ACIDENTES AMBIENTAIS ENVOLVENDO PRODUTOS QUÍMICOS Orientadora: Biól. Iris Regina Fernandes Poffo (PhD.) Trabalho apresentado como pré-requisito para a obtenção de Certificado de Conclusão de Curso de Especialização em Gerenciamento Ambiental São Paulo 2017 iii “Nós nos tornamos, pelo poder de um glorioso acidente evolucionário chamado inteligência, mordomos da continuidade da vida na Terra. Não pedimos este papel, mas não podemos renegá-lo. Podemos não ser adequados para isso, mas aqui estamos." — Stephen Jay Gould iv SUMÁRIO SUMÁRIO......................................................................................................... iv . ......................................................................................... DEDICATÓRIA................................................................................................. vi ... ......................................................................................... AGRADECIMENTOS....................................................................................... vii . RELAÇÃO DE
    [Show full text]
  • REVIEW Electric Fish: New Insights Into Conserved Processes of Adult Tissue Regeneration
    2478 The Journal of Experimental Biology 216, 2478-2486 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.082396 REVIEW Electric fish: new insights into conserved processes of adult tissue regeneration Graciela A. Unguez Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA [email protected] Summary Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
    [Show full text]
  • Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates
    RESEARCH ARTICLE Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates Rahul Bale1, Izaak D. Neveln2, Amneet Pal Singh Bhalla1, Malcolm A. MacIver1,2,3☯*, Neelesh A. Patankar1☯* 1 Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America, 2 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America, 3 Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America ☯ These authors contributed equally to this work. * [email protected] (NAP); [email protected] (MAM) Abstract OPEN ACCESS Examples of animals evolving similar traits despite the absence of that trait in the last com- Citation: Bale R, Neveln ID, Bhalla APS, MacIver MA, Patankar NA (2015) Convergent Evolution of mon ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, Mechanically Optimal Locomotion in Aquatic are called cases of convergent evolution. Instances of convergent evolution of locomotory Invertebrates and Vertebrates. PLoS Biol 13(4): patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, e1002123. doi:10.1371/journal.pbio.1002123 we show that, with respect to a very diverse group of aquatic animals, a mechanically opti- Academic Editor: Anders Hedenström, Lund mal method of swimming with elongated fins has evolved independently at least eight times University, SWEDEN in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we Received: September 29, 2014 take the length of an undulation along an animal’s fin during swimming and divide it by the Accepted: March 6, 2015 mean amplitude of undulations along the fin length, the result is consistently around twenty.
    [Show full text]
  • Do Museu Comunicações De Ciências Da
    Comunicações do Museu de Ciências da PUCRS SÉRIE ZOOLOGIA ISSN 0100-3380 SYSTEMATIC REVISION OF THE NEOTROPICAL CHARACID SUB­ FAMILY STETHAPRIONINAE (PISCES, CHARACIFORMES). Roberto Esser dos Reis . p. 3 Crenicich/a punctata HENSEL, 1870 UMA ESPÉCIE VÁLIDA DE CI­ CLÍDEO PARA O SUL DO BRASIL (PERCIFORMES, CICHLIDAE). Carlos Alberto Santos de Lucena & Paulo Villanova Azevedo . p. 87 HISTÓRICO SISTEMÁTICO E LISTA COMENTADA DAS ESPÉCIES DE PEIXES DE ÁGUA DOCE DO SISTEMA DA LAGUNA DOS PATOS, RIO GRANDE DO SUL, BRASIL. Luiz Roberto Malabarba . p. 107 REDESCRIÇÃO DO GÊNERO Cjnolebias (CYP~ODONTIFORMES, RIVULIDAE), COM A DESCRIÇAO DE UMA ESPECIE NOVA DA BA- CIA DO RIO TOCANTINS. WilsonJ.E.M. Costa ..... .. .......... p. 181 DESCRIÇÃO DE UM GÊNERO E DUAS ESPÉCIES NOVAS DE PEIXES ANUAIS DO CENTRO DA AMÉRICA DO SUL (CYPRINODONTIFOR- MES, RIVULIDAE). Wilson J .E.M. Costa . p. 191 Tomodon dorsatus DUMÉRIL, BIBRON & DUMÉRIL, 1854 UM SINÔ- NIMO SENIOR DE Opisthoplus degener PETERS, 1882 (SERPENTES: COLUBRIDAE: TACHYMENINAE)°. Sonia Terezinha Zanini Cechin . p. 203 Comun. Mus. Ciênc. PUCRS, Sér. zoo/. Porto Alegre/v.2/n9s 6 a 11/p.1-211/1989 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Reitor Prof. Irmão Norberto Francisco Rauch Vice-Reitor Prof. Irmão Avelino Madalozzo Pró-Reitor de Administração Prof. Antonio M. Pascual Bianchi Pró-Reitor de Graduação Prof. Francisco A. Garcia Jardim Pró-Reitor de Pesquisa e Pós-Graduação Prof. Dr. Mons. Urbano Zilles Pró-Reitor de Extensão Universitária Prof. Dr. Irmão Elvo Clemente Pró-Reitor de Assuntos Comunitários Prof. João Carlos Gasparin Diretor do Museu de Ciências da PUCRS Prof. Dr. Jeter J Bertoletti Editoração Jeter J.
    [Show full text]
  • Data Supporting Phylogenetic Reconstructions of the Neotropical Clade Gymnotiformes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Data in Brief 7 (2016) 23–59 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data article Data supporting phylogenetic reconstructions of the Neotropical clade Gymnotiformes Victor A. Tagliacollo a,b,n, Maxwell J. Bernt b, Jack M. Craig b, Claudio Oliveira a, James S. Albert b a Universidade Estadual Paulista – UNESP, Instituto de Biociências de Botucatu, Botucatu, SP 18618-970, Brazil b University of Louisiana at Lafayette, Department of Biology, Lafayette, LA 70504-2451, USA article info abstract Article history: Data is presented in support of model-based total evidence (MBTE) Received 20 November 2015 phylogenetic reconstructions of the Neotropical clade of Gymnoti- Received in revised form formes “Model-based total evidence phylogeny of Neotropical electric 26 January 2016 knifefishes (Teleostei, Gymnotiformes)” (Tagliacollo et al., 2016) [1]). Accepted 30 January 2016 The MBTE phylogenies were inferred using a comprehensive dataset Available online 6 February 2016 comprised of six genes (5277 bp) and 223 morphological characters for an ingroup taxon sample of 120 of 218 valid species and 33 of the 34 extant genera. The data in this article include primer sequences for gene amplification and sequencing, voucher information and Gen- Bank accession numbers, descriptions of morphological characters, morphological synapomorphies for the recognized clades of Gym- notiformes, a supermatrix comprised of concatenated molecular and morphological data, and computer scripts to replicate MBTE infer- ences. We also included here Maximum-likelihood and Bayesian topologies, which support two main gymnotiform clades: Gymnoti- dae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (RhamphichthyidaeþHypopomidae) and Sinusoidea (Sternopygi- daeþApteronotidae).
    [Show full text]
  • Advances in the Study of Behavior, Volume 31.Pdf
    Advances in THE STUDY OF BEHAVIOR VOLUME 31 Advances in THE STUDY OF BEHAVIOR Edited by PETER J. B. S LATER JAY S. ROSENBLATT CHARLES T. S NOWDON TIMOTHY J. R OPER Advances in THE STUDY OF BEHAVIOR Edited by PETER J. B. S LATER School of Biology University of St. Andrews Fife, United Kingdom JAY S. ROSENBLATT Institute of Animal Behavior Rutgers University Newark, New Jersey CHARLES T. S NOWDON Department of Psychology University of Wisconsin Madison, Wisconsin TIMOTHY J. R OPER School of Biological Sciences University of Sussex Sussex, United Kingdom VOLUME 31 San Diego San Francisco New York Boston London Sydney Tokyo This book is printed on acid-free paper. ∞ Copyright C 2002 by ACADEMIC PRESS All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
    [Show full text]
  • Rapid Assessment Program RAP Bulletin a Rapid Biological Assessment of Biological of the Aquatic Ecosystems of Assessment the Coppename River Basin, Suriname 39
    Rapid Assessment Program RAP Bulletin A Rapid Biological Assessment of Biological of the Aquatic Ecosystems of Assessment the Coppename River Basin, Suriname 39 Leeanne E. Alonso and Haydi J. Berrenstein (Editors) Center for Applied Biodiversity Science (CABS) Conservation International Suriname Stichting Natuurbehoud Suriname (Stinasu) Anton de Kom University of Suriname National Zoological Collection of Suriname (NZCS) National Herbarium of Suriname (BBS) The RAP Bulletin of Biological Assessment is published by: Conservation International Center for Applied Biodiversity Science 1919 M Street NW, Suite 600 Washington, DC USA 20036 202-912-1000 tel 202-912-1030 fax www.conservation.org www.biodiversityscience.org Editors: Leeanne E. Alonso and Haydi J. Berrenstein Design: Glenda Fabregas Map: Mark Denil Translations: Haydi J. Berrenstein Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. ISBN #1-881173-96-8 © 2006 Conservation International All rights reserved. Library of Congress Card Catalog Number 2006933532 The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of Conservation International or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Any opinions expressed in the RAP Bulletin of Biological Assessment Series are those of the writers and do not necessarily reflect those of Conservation International or its co-publishers. RAP Bulletin of Biological Assessment was formerly RAP Working Papers. Numbers 1-13 of this series were published under the previous series title.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • JÚLIA GIORA BIOLOGIA REPRODUTIVA E HÁBITO ALIMENTAR DE Eigenmannia Trilineata López & Castello, 1966
    JÚLIA GIORA BIOLOGIA REPRODUTIVA E HÁBITO ALIMENTAR DE Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, STERNOPYGIDAE) DO PARQUE ESTADUAL DE ITAPUÃ, RIO GRANDE DO SUL, BRASIL. Dissertação apresentada ao Programa de Pós- Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Mestre em Biologia Animal. Área de Concentração: Ictiologia e Herpetologia Orientador: Profa. Dra. Clarice Bernhardt Fialho UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2004 BIOLOGIA REPRODUTIVA E HÁBITO ALIMENTAR DE Eigenmannia trilineata López & Castello, 1966 (TELEOSTEI, STERNOPYGIDAE) DO PARQUE ESTADUAL DE ITAPUÃ, RIO GRANDE DO SUL, BRASIL. JÚLIA GIORA Aprovada em__________________________ _____________________________________ Dr. Fernando G. Becker _____________________________________ Dr. John R. Burns _____________________________________ Dr. William G. R. Crampton ii Agradecimentos À CAPES, pela bolsa concedida. À Profª. Dra. Clarice Bernhardt Fialho, pela orientação, amizade, confiança e paciência com meus momentos de ansiedade. Ao Prof. Dr. Luiz Roberto Malabarba, pelo auxílio na identificação da espécie estudada e estímulo ao meu trabalho. À todos aqueles que auxiliaram no trabalho de campo: Ana Paula S. Dufech, Carlos Eduardo Machado, Daniel de Borba Rocha, Diego Cognato, Giovanni Neves, Jacira Silvano, Juan A. Anza, Juliano Ferrer, Ludmila Ramos, Marco A. Azevedo, Sue B. Nakashima, Tatiana S. Dias, Vinícius R. Lampert e o motorista Argílio. Aos colegas do Laboratório de Ictiologia, os quais, cada um com sua especialidade, formam uma equipe sólida, qualificada e divertida, servindo de base não somente para este mas também para muitos outros trabalhos. Dentre estes colegas, um agradecimento especial para Ana Paula S. Dufech, minha companheira de mestrado e de projeto de Itapuã, por todo o auxílio e amizade; para Marco A.
    [Show full text]
  • Diversity and Phylogeny of Neotropical Electric Fishes (Gymnotiformes)
    Name /sv04/24236_u11 12/08/04 03:33PM Plate # 0-Composite pg 360 # 1 13 Diversity and Phylogeny of Neotropical Electric Fishes (Gymnotiformes) James S. Albert and William G.R. Crampton 1. Introduction to Gymnotiform Diversity The evolutionary radiations of Neotropical electric fishes (Gymnotiformes) pro- vide unique materials for studies on the evolution of specialized sensory systems and the diversification of animals species in tropical ecosystems (Hopkins and Heiligenberg 1978; Heiligenberg 1980; Heiligenberg and Bastian 1986; Moller 1995a; Crampton 1998a; Stoddard 1999; Albert 2001, 2002). The teleost order Gymnotiformes is a clade of ostariophysan fishes most closely related to cat- fishes (Siluriformes), with which they share the presence of a passive electro- sensory system (Fink and Fink 1981, 1996; Finger 1986). Gymnotiformes also possess a combined electrogenic–electroreceptive system that is employed for both active electrolocation, the detection of nearby objects that distort the self- generated electric field, and also electrocommunication, the signaling of identity or behavioral states and intentions to other fishes (Carr and Maler 1986). Active electroreception allows gymnotiforms to communicate, navigate, forage, and ori- ent themselves relative to the substrate at night and in dark, sediment-laden waters, and contributes to their ecological success in Neotropical aquatic eco- systems (Crampton and Albert 2005). The species-specific electric signals of gymnotiform fishes allow investigations of behavior and ecology that are simply unavailable in other groups. Because these signals are used in both navigation and mate recognition (i.e., prezygotic reproductive isolation) they play central roles in the evolutionary diversification and ecological specialization of species, as well as the accumulation of species into local and regional assem- blages.
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus Danillo S Silva, Susana SR Milhomem, Julio C Pieczarka and Cleusa Y Nagamachi* Address: Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral, sn Guamá. Belém, Pará, 66075-900, Brazil Email: Danillo S Silva - [email protected]; Susana SR Milhomem - [email protected]; Julio C Pieczarka - [email protected]; Cleusa Y Nagamachi* - [email protected] * Corresponding author Published: 21 November 2009 Received: 24 June 2009 Accepted: 21 November 2009 BMC Genetics 2009, 10:74 doi:10.1186/1471-2156-10-74 This article is available from: http://www.biomedcentral.com/1471-2156/10/74 © 2009 Silva et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Cytogenetic studies were carried out on samples of Eigenmannia virescens (Sternopygidae, Gymnotiformes) obtained from four river systems of the Eastern Amazon region (Para, Brazil). Results: All four populations had 2n = 38, with ZZ/ZW sex chromosomes (Z, acrocentric; W, submetacentric). Constitutive heterochromatin (CH) was found at the centromeric regions of all chromosomes. The W chromosome had a heterochromatic block in the proximal region of the short arm; this CH was positive for DAPI staining, indicating that it is rich in A-T base pairs.
    [Show full text]