Biomedical and Pharmacological Potential of Tetrodotoxin-Producing Bacteria Isolated from Marine Pufferfish Arothron Hispidus (Muller, 1841)

Total Page:16

File Type:pdf, Size:1020Kb

Biomedical and Pharmacological Potential of Tetrodotoxin-Producing Bacteria Isolated from Marine Pufferfish Arothron Hispidus (Muller, 1841) The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2010 | volume 16 | issue 3 | pages 421-431 Biomedical and pharmacological potential of tetrodotoxin-producing ER P bacteria isolated from marine pufferfishArothron hispidus (Muller, 1841) A P Bragadeeswaran S (1), Therasa D (1), Prabhu K (1), Kathiresan K (1) RIGINAL O (1) Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India. Abstract: Specimens of the pufferfish Arothron hispidus collected at Parangipettai, on the southeast coast of India, were subjected to bacterial isolation and identification. Three species were identified, namely Bacillus sp., Kytococcus sedentarius and Cellulomonas fimi. Partially-purified microbial filtrates exhibited hemolytic activity on chicken and human erythrocytes of O, B and AB blood groups, with maximum activity of 32 HU. The microbial filtrates also presented ATPase, Mg2+-ATPase, Na+K+-ATPase and AchE enzymatic activities of positive neuromodulation in Kytococcus sedentarius with 1300, 300.1, 1549.98 and 140.55%, in Cellulomonas fimi with 620, 300, 10 and 128.42%, and in Bacillus species with 40, 200, 849.98 and 158.69%, respectively. Toxicity symptoms were observed when the bacterial filtrate was intraperitoneally injected into mice. The bacterial filtrate caused adverse effects on viability of the mouse muscle cell line (L929) and leukemia cell line (P388). Maximum level of inhibition was observed on the growth of L929 cell line. Bacillus lentimorbus inhibited the cell line from 84.03 to 94.43% whereas Bacillus species inhibited the growth in a range between 77.25 and 86.16% at the lowest dilution. Key words: Arothron hispidus, tetrodotoxin, bioassay, ATPase and AchE enzymatic activities, anticancer activity. INTRODUCTION ability to inflate rapidly, filling their extremely elastic stomach with water (or air when outside Tetrodotoxin (TTX) is the best known marine the water) until they are almost spherical in shape. toxin due to its frequent involvement in fatal The bacteria associated with some pufferfish food poisoning, unique chemical structure and produce powerful neurotoxin in their internal specific action of blocking sodium channels of organs making them an unpleasant, possibly excitable membranes (1, 2). The toxin derives its lethal, meal for any predator (9). name from the pufferfish family (Tetraodontidae) and occurs widely in the terrestrial and marine MATERIALS AND METHODS animal kingdom (3-6). Tetrodotoxin is a powerful neurotoxin that can cause death in 60% of humans Specimen Collection (7). A human has to ingest only a few milligrams The puffer fishArothron hispidus (Muller, 1841) to produce a fatal reaction to the toxin (8). In (Vertebrata: Actinopterygii: Tetraodontiformes: recent years, tetrodotoxin has been utilized as a Tetraodontidae) was collected from the pharmacological probe. Annankoil fish landings at Parangipettai (Lat. As a defense mechanism, pufferfish have the 11° 29’ N; Long. 79° 46’ E) southeast coast of Bragadeeswaran S, et al. Biomedical and pharmacological potential of tetrodotoxin-producing bacteria isolated from pufferfish India, and immediately brought fresh to the Isolation and Partial Purification of TTX from laboratory (1 km). Skin, intestine and liver Bacterial Cultures tissues were aseptically excised for isolation of The pure isolate was inoculated with a sterile microbes. loop inside a capped 1,000-mL flask containing 500 mL of sterile Zobell broth medium for Isolation and Identification of Bacteria culturing at 25°C in an incubator for ten days in ZoBell marine agar 2216 (Himedia, Mumbai) darkness without aeration (4); subsequently, it was used for bacterial isolation. The agar plates was subjected to TTX detection. The isolation and were prepared in sterilized dishes with 15 g of purification of TTX from bacterial cultures were agar dissolved in 1.0 L of ZoBell 2216 medium, basically the same procedures as those used for adjusted to a pH of 7.2. One gram of pufferfish pufferfish tissues, briefly described by Yu (10), in skin, liver and intestine each was homogenized which each broth culture was centrifuged at 3,000 and suspended in 9 mL of sterile sea water. rpm for 15 minutes to remove the precipitated The samples were serially diluted for isolation bacterial cells. of bacterial strains by spreading 0.1 mL of the The supernatant was evaporated under diluted samples on agar plates and the result reduced pressure to a volume of water-washed was maintained at 28°C for 5 to 14 days to activated charcoal under agitation and filtered permit bacterial growth. Eventually, mixtures of through a funnel. The charcoal on the funnel was colonies were formed on each plate, after which thoroughly washed with distilled water and the they were purified by the streak plate method TTX adsorbed was eluted three times with three on another new ZoBell 2216 agar plate until volumes of 1% acetic acid in 20% aqueous ethanol. discrete colonies were obtained. Each discrete The eluent was evaporated and lyophilized. The colony was further sub-cultured several times to lyophilized toxin extract was dissolved in 10 mL ensure that it was a pure culture before bacterial of 0.03 M acetic acid and subjected to gel filtration identification using the Microbial Identification through a column (2 x 50 cm) of Bio-Gel® P-2 System (MIS version n. 4.5, Microbial (Bio-Rad Laboratories, USA) equilibrated with Identification Inc., USA), which identified 0.03 M acetic acid. Toxic fractions were combined the whole cell fatty acid profiles between the and concentrated at reduced pressure to a final bacterial samples and standards. volume of 10 mL which was subjected to further toxicity bioassay. Identification by the Microbial Identification System Hemolysis Study The microbial identification system relies The microbial crude extracts were assayed on on qualitative and quantitative analysis of chicken and human (A, B, AB and O) erythrocytes the culture strains identified by the fatty acid as described by Prasad and Venkateshvaran (11). composition of the organism (MIS version 3.8). Samples of chicken blood were obtained from a Moreover, a gas chromatograph (Agilent GC nearby slaughterhouse in Parangipettai, while 6890N®, Agilent Technologies, USA) equipped the human blood was obtained from Sheena with a flame ionization detector and a 2-meter Clinic, Andheri (W), Mumbai, using 2.7% HP Ultra 2 capillary column (HP 6890N®, ethylenediaminetetraacetic acid (EDTA) solution Agilent Technologies, USA) (inner diameter, as an anticoagulant at 5% of the blood volume, 0.2 mm; film thickness, 0.33 mm) coated with and brought to the laboratory. The blood was 5% phenyl methyl silaxane were used. The rate centrifuged thrice at 5,000 rpm for five minutes. of hydrogen carrier gas flow was maintained A 1% erythrocyte suspension was prepared for at 30 mL/minute. Fatty acid methyl esterases hemolysis study. (FAMEs) were identified by the Microbial The hemolytic test was performed in 96-well ‘v’ Identification (MIDI) calibration standard bottom microtiter plates. Serial two-fold dilutions software. The pure culture strains from the of the crude toxin/fractions were made in 100 μL third quadrant streaking (harvesting) culture of normal saline. Then, 100 μL of 1% erythrocyte were transferred into a tube with a Teflon-lined was added to all the wells. The positive and screw cap. The microbe was identified based on negative controls were maintained by adding 100 the fatty acid profile. μL of distilled water and 100 μL of normal saline, J Venom Anim Toxins incl Trop Dis | 2010 | volume 16 | issue 3 422 Bragadeeswaran S, et al. Biomedical and pharmacological potential of tetrodotoxin-producing bacteria isolated from pufferfish respectively, to the 1% red blood cell suspension. ATPase assay The plate was gently shaken and allowed to The ATPase assay for inorganic phosphate was stand for three hours at room temperature. performed according to Lowry and Lopez (13). Presentation of uniform red-color suspension in For total ATPase reaction mixture, 0.8 mL of the wells was considered to constitute positive imidazole buffer (0.135 mm) with 100 mM NaCl, hemolysis and a button formation in the bottom 20 mM KCl and 5 mM MgCl, were taken in each of the wells constituted an absence of hemolysis. test tube and 0.1 mL of enzyme (a quantity that The reciprocal of the highest dilution of the crude depends on the protein mg/h of enzyme source) toxin showing the hemolytic pattern (hemolytic was added and stirred. To this mixture, 0.1 mL of unit) was divided by the protein content to obtain toxin at each of four concentrations (250 μg, 500 the specific hemolytic unit. μg, 750 μg, and 1,000 μg) was added immediately by using micropipettes. Mouse Bioassay for Lethality For the Mg2+-ATPase reaction mixture, 0.07 All animal bioassays were carried out by mL of obtain (1 mM) was added as inhibitor for following the statement of the Institutional Na+-K+-ATPase in addition to the above mixture. Ethics Committee (regulation number 160/1999/ Triple distilled water (0.1 mL) was added to the CPCSEA/11.01.2008) of the Rajah Muthiah total ATPase reaction mixture and 0.03 mL of Medical College, Annamalai University. The triple distilled water was added to Mg2+-ATPase bioassay for lethality was done by using clinically mixture to bring the reaction mixture to a total healthy male albino mice weighting 20 ± 2g that volume of 1.05 mL. were maintained in a healthy condition in the The reaction was started by adding 50 μL of laboratory. Mice in triplicate sets were challenged ATP substrate (4.5mM) in each tube. All the intraperitoneally with 0.25, 0.50, 0.75 and 1.0 tubes were gently shaken and incubated at 37°C mL of the crude toxin, dissolved at 5 mg/mL and for 30 minutes in a water bath. By adding 0.5 mL 1.0 mL each of the 11 fractions.
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • 1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020.
    [Show full text]
  • Arothron Hispidus (Linnaeus, 1758)
    Arothron hispidus (Linnaeus, 1758) English Name: Whitespotted pufferfish Family: TETRAODONTIDAE Local Name: Lahjehi koli Order: Tetraodontiformes Size: Max. 48 cm Specimen: MRS/P0482/97 Distinctive Characters: Dorsal fin with 10-Il rays. Anal fin with 10-11 rays. Pectoral fin with 17-19 rays. Small spinules on head and body except snout and posterior caudal peduncle. Nostril consisting of two fleshy flaps from a common base (characteristic of the genus). Caudal fin rounded. Colour: Greyish to greenish brown with small white spots on head, back and sides. I or 2 yellow rings and several yellow spots around pectoral fin. 2-5 bars across sides, always a short dark barbelow eye and another below pectoral fin. Habitatand Biology: Generally found in shallow protected areas to depths of 25 m. Juveniles seen in weedy areas. Diet highly varied; feeding on molluscs, tunicates, sponges, corals, anemones, crabs, tubeworms, sea urchins, brittle stars and starfishes (including crown-of-thorns), and hydroids. Distribution: Indo-Pacific and Eastern Pacific. Remarks: Arothron hispidus like other pufferfishes, is highly poisonous. The degree of toxicity of puffer fishes varies greatly with the species and apparently also with geographical area and season. 368 Arothron immaculatus (Bloch and Schneider, 1801 English Name: Blackedged pufferfish Family: TETRAODONTIDAE Local Name: Fukkoli Order: Tetraodontiformes Size: Max. 30 cm Specimen: MRS/0001/86 Distinctive Characters: Dorsal fin with 9-10 rays. Anal fin with 9-10 rays. Pectoral fin with 15-16 rays. Body round in cross-section. Nasal organsof two tentacles joined at the base. Thebody except posterior part of tail, base of anal and snout covered with slender spines.
    [Show full text]
  • Oceanological and Hydrobiological Studies
    Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology Volume 49, No. 1, March 2020 ISSN 1730-413X pages (34-48) eISSN 1897-3191 Dominant species drive seasonal dynamics of the sh community in the Min estuary, China by Abstract Fishery resources are currently facing multiple stresses Jun Li, Bin Kang* such as over shing, pollution and climate change. Looking into processes and mechanisms of the dynamic sh community through detailed quantitative analyses contributes to e ective conservation and management of shery resources. The Min estuary plays an important role in maintaining sheries in southeastern coastal China, therefore the sh community in the brackish area was investigated and analyzed in this study. A total of 127 DOI: 10.1515/ohs-2020-0004 species belonging to 91 genera, 49 families and 14 orders Category: Original research paper were sampled in 2015. Eight indices re ecting four aspects of sh communities were determined, i.e. species richness, Received: May 5, 2019 species evenness, heterogeneity and taxonomy. Di erences Accepted: August 21, 2019 between the indices were nonsigni cant, suggesting that the use of a single diversity descriptor could not provide a full explanation. Nine dominant species in the Min estuary showed seasonal turnover by rational use of resources and Jimei University, 185 Yinjiang Rd., co-occurring species showed correspondingly adequate 361021 Xiamen, China habitat preferences and feeding habits to avoid competition. The species Harpadon nehereus occurred as the dominant species in three seasons except spring. High values of niche overlap among common or rare species and lower values of niche overlap among all dominant species e ectively brought the diversity of the sh community into a state of equilibrium.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • New Records of Philometra Pellucida (Jägerskiöld, 1893) (Nematoda: Philometridae) from the Body Cavity of Arothron Mappa (Less
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 025 doi: 10.14411/fp.2020.025 http://folia.paru.cas.cz Research Note New records of Philometra pellucida (Jägerskiöld, 1893) (Nematoda: Philometridae) from the body cavity of Arothron mappa (Lesson) and Arothron nigropunctatus (Bloch et Schneider) reared in aquariums, with synonymisation of Philometra robusta Moravec, Möller et Heeger, 1992 Takashi Iwaki1, Kenta Tamai2, Keisuke Ogimoto2, Yuka Iwahashi3, Tsukasa Waki1,4, Fumi Kawano1 and Kazuo Ogawa1 1 Meguro Parasitological Museum, Meguro-ku, Tokyo, Japan; 2 Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, Japan; 3 SEA LIFE Nagoya, Minato-ku, Nagoya, Aichi, Japan; 4 Present address: Graduate School of Science, Toho University, Funabashi, Chiba, Japan Abstract: We encountered two cases of infection with large female nematodes of the genus Philometra Costa, 1845 in the body cavity of a map puffer Arothron mappa (Lesson) caught off Okinawa, Japan, and a blackspotted puffer Arothron nigropunctatus (Bloch et Schneider) caught off Queensland, Australia, both reared in aquariums in Japan. No morphological difference was observed between the nematodes from A. mappa and A. nigropunctatus. We identified the nematodes as Philometra pellucida (Jägerskiöld, 1893) based on their morphology. The sequences of the nematodes from both hosts were identical to each other (1,643 bp) and formed a clade with other 17 nematodes belonging to the genera Philometra and Philometroides Yamaguti, 1935 with high bootstrap value (bp = 100). It is the first time that the genetic data on P. pellucida are provided. Philometra robusta Moravec, Möller et Heeger, 1992 is synonymised with the former species. Keywords: Nematodes, aquarium fish,Tetraodontiformes , Japan, Australia, morphology, 18S ribosomal DNA To date, a total of 20 nominal species of philometrid Echeneis naucrates Linnaeus and Takifugu porphyreus nematodes (Philometridae) have been reported from ma- (Temminck et Schlegel).
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]
  • Co-Occurrence of Tetrodotoxin and Saxitoxins and Their Intra-Body Distribution in the Pufferfish Canthigaster Valentini
    toxins Article Co-Occurrence of Tetrodotoxin and Saxitoxins and Their Intra-Body Distribution in the Pufferfish Canthigaster valentini Hongchen Zhu 1, Takayuki Sonoyama 2, Misako Yamada 1, Wei Gao 1, Ryohei Tatsuno 3, Tomohiro Takatani 1 and Osamu Arakawa 1,* 1 Graduate School of Fisheries and Environmental Sciences, Nagasaki University. 1-14, Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan; [email protected] (H.Z.); [email protected] (M.Y.); [email protected] (W.G.); [email protected] (T.T.) 2 Shimonoseki Marine Science Museum. 6-1, Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan; [email protected] 3 Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agency. 2-7-1, Nagatahonmachi, Shimonoseki, Yamaguchi 759-6595, Japan; tatsuno@fish-u.ac.jp * Correspondence: [email protected]; Tel.: +81-95-819-2844 Received: 9 June 2020; Accepted: 2 July 2020; Published: 3 July 2020 Abstract: Pufferfish of the family Tetraodontidae possess tetrodotoxin (TTX) and/or saxitoxins (STXs), but the toxin ratio differs, depending on the genus or species. In the present study, to clarify the distribution profile of TTX and STXs in Tetraodontidae, we investigated the composition and intra-body distribution of the toxins in Canthigaster valentini. C. valentini specimens (four male and six female) were collected from Amami-Oshima Island, Kagoshima Prefecture, Japan, and the toxins were extracted from the muscle, liver, intestine, gallbladder, gonads, and skin. Analysis of the extracts for TTX by liquid chromatography tandem mass spectrometry and of STXs by high-performance liquid chromatography with post-column fluorescence derivatization revealed TTX, as well as a large amount of STXs, with neoSTX as the main component and dicarbamoylSTX and STX itself as minor components, in the skin and ovary.
    [Show full text]
  • Modos De Reclutamiento Coralino Y Efectos De La Depredación Por Arothron Meleagris En Corales Pocilopóridos De Isla Gorgona
    Modos de reclutamiento coralino y efectos de la depredación por Arothron meleagris en corales pocilopóridos de Isla Gorgona Carlos G. Muñoz Modos de reclutamiento coralino y efectos de la depredación por Arothron meleagris en corales pocilopóridos de Isla Gorgona Tesis doctoral presentada por: Carlos G. Muñoz, bajo la dirección de: Fernando A. Zapata. Doctorado en Ciencias del Mar Facultad de Ciencias Naturales y Exactas Universidad del Valle Cali, Colombia 2017 II RESUMEN Los arrecifes coralinos son ecosistemas vulnerables que se han venido deteriorando a escala mundial al desarrollarse en condiciones ambientales restringidas, pero también son sistemas altamente dinámicos al exhibir ciclos naturales de perturbación-recuperación que apenas estamos comenzando a entender. El reclutamiento, o la entrada de nuevos individuos a las poblaciones, determina en gran medida el proceso de recuperación natural después de perturbaciones, y puede darse tanto por asentamiento de larvas derivadas de reproducción sexual, como por fragmentación física de colonias y supervivencia de esos fragmentos. En el Pacífico Tropical Oriental los escasos estudios sobre reclutamiento coralino de origen sexual han sido poco exitosos, y a pesar de la potencial importancia de la reproducción asexual por fragmentación, aspectos básicos sobre la ecología de este proceso aún se desconocen. Esta investigación por medio de un amplio trabajo de campo, aportó información novedosa sobre la ecología reproductiva de los corales del Pacífico colombiano. Se proporcionó por primera vez evidencia sobre la presencia de reclutas coralinos de origen sexual en diversos sitios de Isla Gorgona, y mediante monitoreos y experimentos in situ estudiamos algunas causas física y bióticas de la fragmentación de coral en el arrecife de La Azufrada.
    [Show full text]
  • Tetraodontidae
    FAMILY Tetraodontidae Bonaparte, 1832 – pufferfishes GENUS Amblyrhynchotes Troschel, 1856 - puffers Species Amblyrhynchotes hypselogeneion (Bleeker, 1852) - Troschel's puffer [=rueppelii, rufopunctatus] GENUS Arothron Muller, 1841 - pufferfishes [=Boesemanichthys, Catophorhynchus, Crayracion K, Crayracion W, Crayracion B, Cyprichthys, Dilobomycterus, Kanduka] Species Arothron caeruleopunctatus Matsuura, 1994 - bluespotted puffer Species Arothron carduus (Cantor, 1849) - carduus puffer Species Arothron diadematus (Ruppell, 1829) - masked puffer Species Arothron firmamentum (Temminck & Schlegel, 1850) - starry puffer Species Arothron hispidus (Linnaeus, 1758) - whitespotted puffer [=bondarus, implutus, laterna, perspicillaris, punctulatus, pusillus, sazanami, semistriatus] Species Arothron immaculatus (Bloch & Schneider, 1801) - immaculate puffer [=aspilos, kunhardtii, parvus, scaber, sordidus] Species Arothron inconditus Smith, 1958 - bellystriped puffer Species Arothron meleagris (Anonymous, 1798) - guineafowl puffer [=erethizon, lacrymatus, latifrons, ophryas, setosus] Species Arothron manilensis (Marion de Proce, 1822) - narrowlined puffer [=pilosus, virgatus] Species Arothron mappa (Lesson, 1831) - map puffer Species Arothron multilineatus Matsuura, 2016 - manylined puffer Species Arothron nigropunctatus (Bloch & Schneider, 1801) - blackspotted puffer [=aurantius, citrinella, melanorhynchos, trichoderma, trichodermatoides] Species Arothron reticularis (Bloch & Schneider, 1801) - reticulated puffer [=testudinarius] Species Arothron stellatus
    [Show full text]
  • Anti-Tumor Activity of Tetrodotoxin Extracted from the Masked Puffer Fish Arothron Diadematus Fatma M Fouda Zoology Department
    Egyptian Journal of Biology, 2005, Vol. 7, pp 1-13 © Printed in Egypt. Egyptian British Biological Society (EBB Soc) _________________________________________________________________________________________________________________ Anti-tumor activity of tetrodotoxin extracted from the Masked Puffer fish Arothron diadematus Fatma M Fouda Zoology Department, Women’s College, Ain Shams University, Cairo, Egypt ABSTRACT Anti-tumor activity of tetrodotoxins extracted from the skin of the Masked Puffer fish (Arothron diadematus) from the Red Sea was evaluated using the Ehrlich ascite carcinoma tumor model in mice. Activity was assessed using a variety of cellular and liver biochemical parameters. Experimental mice were divided into 4 equal groups and injected intra-peritoneally with: saline (control); a sub-lethal dose of the toxin (1\10 LD50); 1 ml of a solution containing 2 million ECA cancer cells; and both (1 ml of a solution containing 2 million ECA cancer cells and a sub-lethal dose of toxin). Subsets of mice from each group were dissected after 3, 6, 9, and 12 days. Statistical analyses demonstrated the following: - the anti-tumor activity of the toxin increased lifespan by 46%, in addition to decreasing the number of tumor cells. - There was also an obvious cytotoxic effect of tetrodotoxins on cells, leading to apoptosis and a decrease in the volume of the peritoneal fluid. - The negative effects of tumor cells on the biochemical processes of liver was illustrated by an increased release of MDA & GGT enzymes and fat oxidation, and a decreased release of both enzymes and anti-oxidation agents. These negative effects were relieved for 6 days after injection by toxin. KEYWORDS: Cancer, Ehrlich Ascite Carcinoma, Anti-tumor, TTX, Sodium channel blockers, MDA, GSH, SOD, GSHpx and GGT.
    [Show full text]
  • The Genetic Basis of Scale-Loss Phenotype in the Rapid Radiation of Takifugu Fishes
    G C A T T A C G G C A T genes Article The Genetic Basis of Scale-Loss Phenotype in the Rapid Radiation of Takifugu Fishes Dong In Kim y, Wataru Kai y, Sho Hosoya y, Mana Sato, Aoi Nozawa, Miwa Kuroyanagi, Yuka Jo, Satoshi Tasumi, Hiroaki Suetake, Yuzuru Suzuki and Kiyoshi Kikuchi * Fisheries Laboratory, University of Tokyo, Maisaka, Shizuoka 431-0214, Japan; [email protected] (D.I.K.); Wataru.Kai@fluidigm.com (W.K.); [email protected] (S.H.); [email protected] (M.S.); [email protected] (A.N.); [email protected] (M.K.); [email protected] (Y.J.); tasumi@fish.kagoshima-u.ac.jp (S.T.); [email protected] (H.S.); [email protected] (Y.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 16 October 2019; Accepted: 3 December 2019; Published: 10 December 2019 Abstract: Rapid radiation associated with phenotypic divergence and convergence provides an opportunity to study the genetic mechanisms of evolution. Here we investigate the genus Takifugu that has undergone explosive radiation relatively recently and contains a subset of closely-related species with a scale-loss phenotype. By using observations during development and genetic mapping approaches, we show that the scale-loss phenotype of two Takifugu species, T. pardalis Temminck & Schlegel and T. snyderi Abe, is largely controlled by an overlapping genomic segment (QTL). A search for candidate genes underlying the scale-loss phenotype revealed that the QTL region contains no known genes responsible for the evolution of scale-loss phenotype in other fishes.
    [Show full text]