bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449661; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mapping the corticoreticular pathway from cortex-wide anterograde axonal tracing in the mouse Pierce Boyne, PT, DPT, PhD, NCS;1 Oluwole O. Awosika, MD, MS;2 Yu Luo, PhD3 1Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, 45267, USA 2Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA 3Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA Key words: motor activity, locomotion, postural balance, pyramidal tracts, extrapyramidal tracts, brain mapping Grant support: PB is supported by NIH grant R01HD093694. OOA is supported by an American Academy of Neurology Career Development Award. YL is supported by NIH grant R01NS107365. Corresponding author: Pierce Boyne, PT, DPT, PhD, NCS Health Sciences Building, room 267 3225 Eden Ave. Cincinnati, OH, 45267-0394
[email protected] 513-558-7499 (phone); 513-558-7474 (fax) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449661; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ABSTRACT 2 The corticoreticular pathway (CRP) has been implicated as an important mediator of 3 motor recovery and rehabilitation after central nervous system damage.