Visual Signaling in Hylarana Chalconota at Cibodas Botanical Garden, West Java, Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Visual Signaling in Hylarana Chalconota at Cibodas Botanical Garden, West Java, Indonesia Herpetology Notes, volume 7: 615-617 (2014) (published online on 12 November 2014) Visual signaling in Hylarana chalconota at Cibodas Botanical Garden, West Java, Indonesia Mohamad Isnin Noer1,* and Andika Mardiansyah2 Communication is the system used by organism to send Hylarana species, Hylarana chalconota from West information by means of signal transmission (Rendall et Java, Indonesia. al., 2009). In anurans, acoustic signaling is the main form Hylarana chalconota is a medium sized frog found in of communication utilized in variable social contexts Sumatra, Java, and Bali (Figure 1). This species inhabits (Duellman and Trueb, 1994). However, some species various habitats, from riparian areas in undisturbed that inhabit acoustically noisy environments employ tropical rainforest to areas near human settlement, visual signals as well, by using body movements (Hödl fishponds or paddy fields (Iskandar, 1998; Kurniati, and Amézquita, 2001; Lindquist and Hetherington, 2006). It is frequently found perching on leaves of 1996). herbaceous plants that surround slow- to fast-moving Studies of anuran visual signals are limited to streams. Hylarana chalconota produces low-energetic diurnal species, as indicated by the growing number of calls (Kurniati et al., 2010). literature about this topic (Hödl and Amézquita, 2001). Behaviors of Hylarana chalconota were observed Meanwhile, visual signals in nocturnal frogs have been in an artificial pond at Cibodas Botanical Garden (6 often neglected (Buchanan, 1998), although indications 44’ 38” S, 107 0’ 25” E). This pond has slow-moving for small visual repertoires exists among nocturnal water with a little outlet. Frogs were seen in quite large species (Hödl and Amézquita, 2001). However, many numbers and apparently use the pond for breeding. nocturnal frogs are endowed with a visual system that No other anuran species were found in the vicinity. very sensitive to very low illumination (Cummings, et Comprehensive sampling was used to observe the al., 2008) and is used during a variety of activities. Such behaviors of the frogs. Observation started by searching visual acuity has been assumed to be a considerable for individuals with a flashlight. Once an individual factor to explain the evolution of visual communication was located, we turned off the flashlight to minimize in nocturnal frogs (Hartmann et al., 2005). stress due to the excessive illumination. Then, we Most visual communication research focuses on Neotropical frogs, while the visual signals performed by Indo-Malayan frogs are less explored, being known in the genus Staurois (Preininger et al., 2009; Grafe and Wanger, 2007; Grafe et al., 2012), Micrixalus (Preininger et al., 2013), and Hylarana (Grafe, 2008). Visual signaling in Hylarana has so far only been reported in Hylarana baramica, which is displaying toe waving to lure potential prey (Grafe, 2008). Here, we present observations of visual signals in another 1 Biology Department, Universitas Negeri Jakarta, Jakarta, Indonesia 2 Al-Izhar High School, Jakarta, Indonesia * Corresponding author e-mail: [email protected] Figure 1. Hylarana chalconota 616 Mohamad Isnin Noer & Andika Mardiansyah Figure 2. Visual signals performed by Hylarana chalconota, A: limb lifting, B: leg kicking immediately recorded the behavior of individuals using visual signals that function as territorial defenses in a Sony DCR-PC109 camcorder equipped with infrared male-male interactions. Our results agree with Hödl night vision positioned 50 cm from the study subject. and Amézquita (2001), who previously stated that The observations were ended after individuals jumped visual signaling varies among taxa. Understanding the into the water. The video was analyzed frame-by-frame evolution of visual signal in Hylarana chalconota is with video coding software Solomon Coder (Péter, not straightforward, since this species is nocturnal and 2011) to define the kind of visual signal that individuals lives in a number of different environments with various were engaged in. Description of visual signals followed levels of noise. Possible explanations for the evolution Hödl and Amézquita (2001). of visual signaling in this species are low intensity calls On 23 March 2014, at 21.45, the temperature was (Kurniati et al., 2010) and kicking movements during warm (approximately 230 C) and there was negligible physical combat. The low-energetic calls produced by moonlight due to the presence of substantial cloud Hylarana chalconota could cause a decrease in the cover. One male of H. chalconota was observed at signal-to-noise ratio, hence this species needs to utilize the drainage channel of the pond attempting to defend additional modes of communication to overcome this his territory from another male. He was trying to alert problem. The association between low intensity calls his neighboring male (approximately 50 cm away) by and the occurrence of visual communication had also performing limb movements as visual cues, but did not been studied in B. ephippium (Pombal et al., 1994). In emit acoustic signals. Visual signals included quick addition to low-energetic calls, the kicking movements limb lifting (foot lifting and arm lifting) and leg kicking performed during physical attacks have been suggested (Figure 2). Foot lifting and leg kicking were performed as precursors of ritualized visual signals used in an using left limb, whereas arm liftings were displayed agonistic context (Caldart et al., 2014). using both hands alternately. In addition, limb lifting was also observed in second male positioned on the edge References of the pond while engaging in agonistic interaction with another male. This signal was observed in the individual Preininger, D., Boeckle, M., Hödl, W. (2009): Communication in just shortly after having had a fight with another male. noisy environments I: acoustic signals of Staurois latopalmatus During a fight, a male was seen trying to dislodge his Boulenger 1887. Herpetologica 65: 154-165. Buchanan, B.W. (1998): Low-illumination prey detection by rival by kicking it frequently using his legs. squirrel treefrogs. Journal of Herpetology 32:270-274. This is the second report of visual signaling in Caldart, V.M., Iop, S., Cechin, S.Z. (2014): Social interactions in nocturnal frogs in the Indo-Malayan Region, after a neotropical stream frog reveal a complex repertoire of visual Hylarana baramica (Grafe, 2008). Compared to H. signals and the use of multimodal communication. Behaviour baramica, H. chalconota possesses more diverse 151: 719-739. Visual signaling in Hylarana chalconota at Cibodas Botanical Garden, Indonesia 617 Cummings, M.E., Bernal, X.E., Reynaga, R., Rand, A.S., Ryan, Kurniati, H. (2006): The Amphibians Species in Gunung Halimun M.J. (2008): Visual sensitivity to a conspicuous male cue varies National Park, West Java, Indonesia. Zoo Indonesia 15: 107- by reproductive state in Physalaemus pustulosus females. 120. Journal of Experimental Biology 211: 1203-1210. Kurniati, H., Sumadijaya, A., Boonman, A., Laksono, W.T. Duellman, W.E., Trueb, L. (1994): Biology of amphibians. (2010): Ecology, Distribution and Bio-acoustic of Amphibians Baltimore, Johns Hopkins University Press. 670 pp. In Degraded Habitat. Bogor: Research Center for Biology, Grafe, T.U. (2008): Toe Waving in The Brown Marsh Frog Rana Indonesian Institute of Sciences (LIPI). p. 1-22. baramica: Pedal Luring to Attract Prey? Scientia Bruneiana 9: Lindquist, E.D., Hetherington, T.E. (1996): Field studies on visual 3-6. and acoustic signaling in the” earless” Panamanian golden frog, Grafe, T.U., Preininger, D., Sztatecsny, M., Kasah, R., Dehling, J. Atelopus zeteki. Journal of Herpetology 30: 347-354. M., Proksch, S., Hödl, W. (2012): Multimodal communication Péter, A. (2011): Solomon Coder (version beta 11.01. 22): a simple in a noisy environment: a case study of the Bornean rock frog solution for behavior coding. Available at: http://solomoncoder. Staurois parvus. PLoS One 7: 1-8. com. Grafe, T.U., Wanger, T. C. (2007): Multimodal Signaling in Male Pombal Jr, J.P., Sazima, I., Haddad, C.F.B. (1994): Breeding and Female Foot-Flagging Frogs Staurois guttatus (Ranidae): behavior of the pumpkin toadlet, Brachycephalus ephippium An Alerting Function of Calling. Ethology 113: 772-781. (Brachycephalidae). Journal of Herpetology 28:516-519. Hartmann, M.T., Hartmann, P.A., Haddad, C.F.B. (2005): Visual Preininger, D., Boeckle, M., Freudmann, A., Starnberger, I., signaling and reproductive biology in a nocturnal treefrog, genus Sztatecsny, M., Hödl, W. (2013): Multimodal signaling in the Hyla (Anura: Hylidae). Amphibia-Reptilia 25: 395-406. Small Torrent Frog (Micrixalus saxicola) in a complex acoustic Hödl, W., Amézquita, A. (2001): Visual signaling in anuran environment. Behavioral Ecology and Sociobiology 67: 1449- amphibians. In: Ryan M J, editor. Anuran communication. 1456. Washington, Smithsonian Institution Press. p. 121-141. Rendall, D., Owren, M.J., Ryan, M.J. (2009): What do animal Iskandar, D. T. (1998): The amphibians of Java and Bali. Bogor: signals mean? Animal Behaviour 78: 233-240. Research and Development Centre for Biology LIPI. p. 1-117. Accepted by Hendrik Müller.
Recommended publications
  • February Newsletter
    Systematic Innovation e-zine Issue 129, December 2012 In this month’s issue: Article – The Steak/Sizzle Paradox Article – Where To Innovate Plus Two “Ho, Ho, Ho, It’s Christmas” Patent of the Month – Bubble Launched Electro-Spinning Jets Best of The Month – No Man’s Land Investments – Atmospheric Photochemical Accelerator Generational Cycles – Protective Parenting In Extremis Biology – Rock Skipper Frog Short Thort News The Systematic Innovation e-zine is a monthly, subscription only, publication. Each month will feature articles and features aimed at advancing the state of the art in TRIZ and related problem solving methodologies. Our guarantee to the subscriber is that the material featured in the e-zine will not be published elsewhere for a period of at least 6 months after a new issue is released. Readers’ comments and inputs are always welcome. Send them to [email protected] 2012, DLMann, all rights reserved The Steak/Sizzle Paradox This month takes us back to our occasional series of articles looking at high-level organizational contradictions. We became minded to look at this one – the fight between steak and sizzle – following a series of comments from prospective new clients with a desire to do some ‘easy’ ‘innovation stuff’. Our initial response to the queries was, ‘sorry, we can’t help you’ (there is nothing quite so liberating as saying ‘no’ to someone!). Upon reflection, it provoked us to start re-using our old ‘innovation is hard, dummy’ aphorism. Another couple of weeks of incubation and we’re now left with the thoughts presented here. A really good way of presenting these kinds of high level contradiction is through the classic 2x2 management matrix.
    [Show full text]
  • A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae)
    ZOOLOGICAL SCIENCE 23: 727–732 (2006) 2006 Zoological Society of Japan A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae) Masafumi Matsui1* and Jarujin Nabhitabhata2 1Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 2National Science Museum, Technopolis, Klong 5, Klongluang District, Pathun thani 12120, Thailand We describe a new species of torrent-dwelling ranid frog of the genus Amolops from western to peninsular Thailand. Amolops panhai, new species, differs from its congeners by the combination of: small body, males 31–34 mm, females 48–58 mm in snout-vent length; head narrower than long; tympanum distinct; vomerine teeth in short, oblique patches; first finger subequal to second; disc of first finger smaller than that of second, with circummarginal groove; no wide fringe of skin on third finger; toes fully webbed; outer metatarsal tubercle present; supratympanic fold present; dor- solateral fold indistinct; axillary gland present; horny spines on back, side of head and body, and chest absent; large tubercles on side of anus absent; glandular fold on ventral surface of tarsus absent; nuptial pad and paired gular pouches present in male; white band along the upper jaw extending to shoulder absent; larval dental formula 7(4-7)/3(1). This new species is the second anu- ran discovered which has a disjunct distribution around the Isthmus of Kra. Key words: Amolops, new species, Southeast Asia, tadpole, taxonomy, zoogeography Ranong), which we describe below as a new species. INTRODUCTION Oriental ranid frogs related to Amolops Cope, 1865 MATERIALS AND METHODS (sensu lato) are characterized by their peculiar larvae, which A field survey was conducted in western and peninsular Thai- inhabit mountain torrents using an abdominal, suctorial disk land between December 1995 and January 1997.
    [Show full text]
  • Visual Signaling in Anuran Amphibians
    .. Hödl, W. and Amezquita, A. (2001). Visual signaling in anuran amphibians. In: Anuran communication, (M.J. Ryan, ed.). .. Smithsonian lust. Press, Washington. Pp. 121-141. 10 WALTER HÖDL AND ADOLFO AMEZQUITA Visual Signaling in Anuran Amphibians lntroduction cation. social behavior, or natural history. visual signaling was either not considered or was treated as a minor subject Acoustic communication plays a fundamental role in an- (Wells 1977a, 1977b; Arak 1983; Duellman and Trueb 1986; uran reproduction and thus is involved in evolutionary Rand 1988; Halliday and Tejedo 1995; Stebbins and Cohen processes such as mate recognition. reproductive isolation. 1995; Sullivan et al. 1995). The most detailed review ofthe speciation. and character displacement (Wells 1977a. 1977b. subject is now more than 20 years old (Wells 1977b). Never- 1988;Rand 1988;Gerhardt and Schwartz 1995;Halliday and theless some authors have discussed the possible evolution- Tejedo 1995;Sullivan et al. 1995).Visual cues. however. have ary link between visual signaling and the reproductive ecol- been thought to function only during dose-range inter- ogy of species, such as reproduction associated with streams actions (Wells 1977c; Duellman and Trueb 1986). Visual sig- (Heyer et aI. 1990; Lindquist and Hetherington 1996. 1998; naling is predicted to be predominantly employed by diur- Hödl et al. 1997;Haddad and Giaretta 1999) or reproduction nal species at sites with an unobstructed view (Endler 1992). within feeding territories (Wells 1977c). Diurnality. however. is not common for the majority offrog Our aim in this review is (1) to propose a dassmcation of species. Thus vocalizations. which are highly efficient for reported behavioral patterns of visual signaling in frags; (2) communicating at night or in dense vegetation, are by far to describe the diversity of visual signals among living an- the best studied anuran signals (Duellman and Trueb 1986; uran taxa; and (3) to apply a comparative approach to explor- Fritzsch et aI.
    [Show full text]
  • The Internet-Based Southeast Asia Amphibian Pet Trade
    Rebecca E. Choquette et al. THE INTERNET-BASED SOUTHEAST ASIA AMPHIBIAN PET TRADE by Rebecca E. Choquette Ariadne Angulo Phillip J. Bishop Chi T. B. Phan Jodi J. L. Rowley © BROOBAS/CC BY-SA 4.0 © BROOBAS/CC BY-SA Polypedates otilophus Amphibians, as a class, are the most threatened vertebrates on the planet, with 41% of species threatened with extinction. Southeast Asian amphibian species in particular have been impacted by a high rate of habitat loss, and overharvesting for consumption, traditional medicine, and the pet trade has placed further pressure on populations. Collection for the pet trade is a online availability and demand for the pet trade of Southeast Asian amphibian species. We found postings for 59 Southeast Asian posts associated with the United Kingdom, the Czech Republic, the United States, Russia, and Germany. We highlight several species 68 TRAFFIC Bulletin Rebecca E. Choquette et al. The internet-based Southeast Asian amphibian pet trade Aet METHODS alet al et alet al et al study. et al et al et al researchers. Amphibian Species of the World et alet al et al et al et al et alet alet al. et al Yuan et al et al et alet al TRAFFIC Bulletin
    [Show full text]
  • World Scientists' Warning of a Climate Emergency
    Supplemental File S1 for the article “World Scientists’ Warning of a Climate Emergency” published in BioScience by William J. Ripple, Christopher Wolf, Thomas M. Newsome, Phoebe Barnard, and William R. Moomaw. Contents: List of countries with scientist signatories (page 1); List of scientist signatories (pages 1-319). List of 153 countries with scientist signatories: Albania; Algeria; American Samoa; Andorra; Argentina; Australia; Austria; Bahamas (the); Bangladesh; Barbados; Belarus; Belgium; Belize; Benin; Bolivia (Plurinational State of); Botswana; Brazil; Brunei Darussalam; Bulgaria; Burkina Faso; Cambodia; Cameroon; Canada; Cayman Islands (the); Chad; Chile; China; Colombia; Congo (the Democratic Republic of the); Congo (the); Costa Rica; Côte d’Ivoire; Croatia; Cuba; Curaçao; Cyprus; Czech Republic (the); Denmark; Dominican Republic (the); Ecuador; Egypt; El Salvador; Estonia; Ethiopia; Faroe Islands (the); Fiji; Finland; France; French Guiana; French Polynesia; Georgia; Germany; Ghana; Greece; Guam; Guatemala; Guyana; Honduras; Hong Kong; Hungary; Iceland; India; Indonesia; Iran (Islamic Republic of); Iraq; Ireland; Israel; Italy; Jamaica; Japan; Jersey; Kazakhstan; Kenya; Kiribati; Korea (the Republic of); Lao People’s Democratic Republic (the); Latvia; Lebanon; Lesotho; Liberia; Liechtenstein; Lithuania; Luxembourg; Macedonia, Republic of (the former Yugoslavia); Madagascar; Malawi; Malaysia; Mali; Malta; Martinique; Mauritius; Mexico; Micronesia (Federated States of); Moldova (the Republic of); Morocco; Mozambique; Namibia; Nepal;
    [Show full text]
  • 14.-TFL-PD-019.10 Technical-Report-2.Pdf
    TECHNICAL REPORT 2 Project TFL-PD 019/10 Rev. 2 (M) “Collaborative Management of Cibodas Biosphere Reserve West Java Indonesia” “Developing and Adopting an Integrated Strategic Management Plan for Cibodas Biosphere Reserve” (Report on the implementation of activities pertaining to Output 2) Prepared for the project by: The Project Management Team Executed by: Gunung Gede Pangrango National Park Authority (GGPNP) Directorate General of Forest Protection and Nature Conservation The Ministry of Forestry With the assistance of: The International Tropical Timber Organization (ITTO) Cibodas, April 2014 Project Title : Developing Collaborative Management of Cibodas Biosphere Reserve in West Java Indonesia Serial Number : TFL-PD 019/10 Rev. 2 (M) Executing Agency : Gunung Gede Pangrango National Park Authority Directorate General of Forest Protection and Nature Conservation The Ministry of Forestry Jl. Raya Cibodas, PO Box 3 Sindanglaya, Cipanas, Cianjur, West Java Province 43253 Telephone/Fax : +62 263 512776 Host Government : Republic of Indonesia Starting Date : September 2011 Duration : 28 months Budget : ITTO US$ 496,670 Disbursed amount US$ 432,880 GOI US$ 94,608 Total US$ 591,278 Project Key Personnel : Mr. Harianto Arifin, Project Coordinator Mr. Eko Sasmito, Financial Staff Ms. Anggia A. Miranti, Secretary Published by : GGPNP and ITTO Place & Date : Cibodas, April 2014 Copyright ©ITTO Project TFL-PD 019/10 Rev. 2 (M) This report is the product of GGPNP and ITTO; interested parties may reproduce the report in whole or in part solely
    [Show full text]
  • Larval Description and Developmental Staging of Amolops Tadpoles from Nepal, Including Ultrastructure of the Oral Disc and Sucker
    SALAMANDRA 56(4): 317–328 Larval description and developmental staging of Amolops tadpoles from NepalSALAMANDRA 30 October 2020 ISSN 0036–3375 German Journal of Herpetology Larval description and developmental staging of Amolops tadpoles from Nepal, including ultrastructure of the oral disc and sucker Mohsen Nokhbatolfoghahai1, Kevin W. Conway2, Liam Atherton1, Prem B. Budha3, Michael J. Jowers4 & J. Roger Downie1 1) School of Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, UK 2) Department of Ecology and Conservation Biology, Biodiversity Research and Teaching Collections, Texas A & M University, College Station, Texas 77843, USA 3) Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal 4) CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Porto University, Campo de Vairão, Vairão, Portugal Corresponding author: Michael J. Jowers, e-mail: [email protected] Manuscript received: 23 December 2019 Accepted: 21 July 2020 by Jörn Köhler Abstract. Tadpoles of the Asiatic torrent frog genus Amolops possess large abdominal suckers and a complex oral appa- ratus which allow them to adhere tightly to and also to move over wet rock surfaces, a morphology termed gastromyzo- phorous. Accounts of larval development, and overall sucker morphology and microstructure are patchy in this genus. Here, from a large sample (n = 90) of Amolops tadpoles collected from two sites in Nepal, we give a detailed description of the tadpoles’ external morphology, including pigment pattern variation, and their development from soon after hatch- ing to the approach of metamorphosis, including new features of their oral apparatus (tooth rows and labia). Using SEM, we describe ultrastructural details of the sucker’s surface, especially microvillated cells of the friction areas.
    [Show full text]
  • Bryological Times 2020
    The Bryological Times Volume 151 President’s Message – In This Issue – Bernard Goffinet | University of Connecticut |Storrs, U.S.A. President’s Message ...................................... 1 [email protected] Status of the Horton and Jamieson herbaria ............................................................. 2 Our international association serves The Austrian Riccia Project ........................ 3 the global community of bryologists, Sphagnum species of the World: a providing services such as bryonet - Review................................................................ 4 our on-line discussion forum, Bryophyte Diversity and Evolution - Australian bryology in Challenging our own journal devote to bryophyte Times - Coronavirus pandemic ................. 8 biology, as well as awards recognizing Miniature Forests: A Moss Garden at the major accomplishments towards Cibodas Botanical Garden ........................ 11 furthering our knowledge and Obituary – LI Xing-Jiang ............................ 14 enabling students to attend our Upcoming IAB elections ............................ 17 biennial meetings, and grants to stimulate research on the biology or Upcoming awards & grants ..................... 17 conservation of bryophytes. These Personal Announcements ........................ 18 services are made possible by the Administrative Information .................... 19 dedication by council members and ad hoc volunteers from our community. Council members are elected for a four- year term, with the terms of half services
    [Show full text]
  • Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
    HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American
    [Show full text]
  • Gekkotan Lizard Taxonomy
    3% 5% 2% 4% 3% 5% H 2% 4% A M A D R Y 3% 5% A GEKKOTAN LIZARD TAXONOMY 2% 4% D ARNOLD G. KLUGE V O 3% 5% L 2% 4% 26 NO.1 3% 5% 2% 4% 3% 5% 2% 4% J A 3% 5% N 2% 4% U A R Y 3% 5% 2 2% 4% 0 0 1 VOL. 26 NO. 1 JANUARY, 2001 3% 5% 2% 4% INSTRUCTIONS TO CONTRIBUTORS Hamadryad publishes original papers dealing with, but not necessarily restricted to, the herpetology of Asia. Re- views of books and major papers are also published. Manuscripts should be only in English and submitted in triplicate (one original and two copies, along with three cop- ies of all tables and figures), printed or typewritten on one side of the paper. Manuscripts can also be submitted as email file attachments. Papers previously published or submitted for publication elsewhere should not be submitted. Final submissions of accepted papers on disks (IBM-compatible only) are desirable. For general style, contributors are requested to examine the current issue of Hamadryad. Authors with access to publication funds are requested to pay US$ 5 or equivalent per printed page of their papers to help defray production costs. Reprints cost Rs. 2.00 or 10 US cents per page inclusive of postage charges, and should be ordered at the time the paper is accepted. Major papers exceeding four pages (double spaced typescript) should contain the following headings: Title, name and address of author (but not titles and affiliations), Abstract, Key Words (five to 10 words), Introduction, Material and Methods, Results, Discussion, Acknowledgements, Literature Cited (only the references cited in the paper).
    [Show full text]
  • United States National Museum
    MillliwiiiiuiHiiiiHiw SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM BULLETIN 220 WASHINGTON, D.C. 1961 Type Specimens m the U.b. INatioiial iVliiseum By DORIS M. COCHRAN Curator of Reptiles and Amphibians United States National Museum Publications of the United Slates National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly ac- quired facts in the fields of Anthropology, Biology, Geology, History, and Technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the different subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902 papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 220 of the Bulletin series. Remington Kellogg, Director, United States National Museum. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1961 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • The Biodiverse Island Nation of Indonesia Joins the MSBP The
    The International Newsletter of the Millennium Seed Bank Partnership July - December 2017 kew.org/msbp/samara ISSN 1475-8245 Issue: 32 TThhee bbiiooddiivveerrssee iissllaanndd nnaattiioonn ooff IInnddoonneessiiaa jjooiinnss tthhee MMSSBBPP h a f i t a L n a i D : Rafflesia arnoldii , the world’s largest flower. Scientists at Bogor Botanic Gardens are studying the germination, longevity and desiccation tolerance of its seeds. o t o h P K. HARDWICK (RBG Kew), D. LATIFAH (Bogor Botanic Garden), A. R. GUMILANG and M. ZUHRI (Cibodas Botanic Garden) Contents Indonesia is a country of superlatives – the largest ‘island country’ in the world (Australia Page 1 . The biodiverse island nation of Indonesia joins is a continent!), the greatest number of active volcanoes (76), the largest flower (the the MSBP. 1 m-diameter Rafflesia arnoldii ), the tallest flower (the 3 m-high Amorphophallus titanum Page 3 . A message from Colin Clubbe. – also possibly the smelliest flower), the largest lizard (the Komodo dragon, Varanus · A message from Jonas Mueller. komodoensis ) and now the world’s newest ape (the Tapanuli orangutan, Pongo tapanuliensis ). Page 4 . Aquatic seed collecting on the island of South Uist. Despite only covering 1.3% of global land area, Indonesia hosts 10% (approximately Page 5 . Saving the future of Ireland's wildlowers. 35,000) of the world’s flowering plant species, 12% of mammals and 17% of birds. The Page 7 . Seed conservation and storage behaviour in the country encompasses two biodiversity hotspots, one tropical forest wilderness, and has Hawaiian Islands. been described as “a key country in the increasing global efforts to preserve genetic, · Get growing! Sheep poop and native plant seeds species and ecosystem diversity” (de Haes, C., 1992).
    [Show full text]