Sitka Spruce and Engelmann Spruce in Northwest California and Across

Total Page:16

File Type:pdf, Size:1020Kb

Sitka Spruce and Engelmann Spruce in Northwest California and Across Sitka spruce and www.conifercountry.com Pinaceae Engelmann spruce in Sitka spruce Picea sitchensis perennial cones have scales which are soft to the touch—a stark contrast to northwest California and the prickly needles bark has flakey, circular platelets— across the West sun bleached in a dune forrest Bark: thin with circular platelets that flake off; depending on age, color ranges from pale brown when young to dark brown when older (if you can see under mosses). Needles: 1”, dark green, very sharp at the tip, radiate from stem in all directions, tend to point forward (similar to Engelmann), stomatal bloom on underside of needle. Cones: 1”-3”, yellow when young aging to tan; scales are thin and papery with rounded tips Habitat: coastal, wet, 0’-1000’ www.conifercountry.com Pinaceae Engelmann spruce Picea engelmannii short needles are the sharpest of any conifer in the Klamath Mountains bases of trees are buttressed, offering comfortable seating to revel in the conifer diversity of the Russian Wilderness Bark: purplish to reddish-brown, thin, loosely attached circular scales appearing much darker than those of Brewer spruce Needles: one inch long, pointed at tip, roll in fingers, very sharp, with branches often growing upward Cones: 1”-2”, Range* map for: Engelmann spruce (Picea engelmannii) bearing flexible papery scales with irregular, ragged tips, softer tips than Brewer Sitka spruce (Picea sitchensis) spruce Habitat: 3500’-6000’, riparian CA Range: drainages around Russian Peak in the Russian Wilderness, often dominating; also, Clark and Hat creeks in Shasta * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) County www.conifercountry.com Michael Kauffmann | www.conifercountry.com Range* map for: Engelmann spruce (Picea engelmannii) Sitka spruce (Picea sitchensis) * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Michael Kauffmann | www.conifercountry.com.
Recommended publications
  • Picea Sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine Family A
    Picea sitchensis (Bong.) Carr. Sitka Spruce Pinaceae Pine family A. S. Harris Sitka spruce (Picea sitchensis), known also as tideland spruce, coast spruce, and yellow spruce, is the largest of the world’s spruces and is one of the most prominent forest trees in stands along the northwest coast of North America. This coastal species is seldom found far from tidewater, where moist maritime air and summer fogs help to main- tain humid conditions necessary for growth. Throughout most of its range from northern Califor- nia to Alaska, Sitka spruce is associated with western hemlock (Tsuga heterophylla) in dense stands where growth rates are among the highest in North America. It is a valuable commercial timber species for lumber, pulp, and many special uses (15,16). Habitat Native Range Sitka spruce (fig. 1) grows in a narrow strip along the north Pacific coast from latitude 61” N. in south- central Alaska to 39” N. in northern California. The most extensive portion of the range in both width and elevation is in southeast Alaska and northern British Columbia, where the east-west range extends for about 210 km (130 mi) to include a narrow main- land strip and the many islands of the Alexander Archipelago in Alaska and the Queen Charlotte Is- lands in British Columbia (24). North and west of southeast Alaska, along the Gulf of Alaska to Prince William Sound, the range is restricted by steep mountains and Piedmont glaciers edging the sea. Within Prince William Sound, the range again widens to about 105 km (65 mi) to include many offshore islands.
    [Show full text]
  • White Spruce (Sw) - Picea Glauca
    White spruce (Sw) - Picea glauca Tree Species > White spruce Page Index Distribution Range and Amplitiudes Tolerances and Damaging Agents Silvical Characteristics Genetics and Notes BC Distribution of White spruce (Sw) Range of White spruce An open canopy stand of white spruce and trembling aspen on Morice River alluvial terrace. Pure white spruce stands are infrequent in th fire-disturbed, montane boreal landscape. Geographic Range and Ecological Amplitudes Description White spruce is a medium-sized (occasionally >55 m tall), evergreen conifer, with a fairly symmetrical, conical crown, a regular branching pattern that often extends to the ground, and a smooth, dark gray, scaly bark. The wood of white spruce is light, straight grained, and resilient. It is used primarily for lumber and pulp. Geographic Range Geographic element: North American transcontinental-incomplete Distribution in Western North America: (north) in the Pacific region; north and central in the Cordilleran region Ecological Climatic amplitude: Amplitudes subarctic – subalpine boreal – montane boreal – (cool temperate) Orographic amplitude: montane – subalpine Occurrence in biogeoclimatic zones: SWB, (ESSF), MS, BWBS, SBS, SBPS, (IDF), (ICH), (northern CWH) Edaphic Amplitude Range of soil moisture regimes: (very dry) – moderately dry – slightly dry – fresh – moist – very moist – wet Range of soil nutrient regimes: (very poor) – poor – medium – rich – very rich In the BWBS zone, white spruce grows well on medium and rich sites providing a Moder humus formation exists. Wildfires are the major disturbance factor in re-establishing a white spruce stand when acidic Mors begin to develop, a humus form which favors the regeneration and growth of black spruce. Without the fires, the more shade-tolerant black spruce would become a dominant species and form a climatic climax stand.
    [Show full text]
  • Respacing Naturally Regenerating Sitka Spruce and Other Conifers
    Respacing naturally regenerating Sitka spruce and other conifers Sitka spruce ( Picea sitchensis ) Practice Note Bill Mason December 2010 Dense natural regeneration of Sitka spruce and other conifers is an increasingly common feature of both recently clearfelled sites and stands managed under continuous cover forestry in upland forests of the British Isles. This regeneration can be managed by combining natural self-thinning in the early stages of stand establishment with management intervention to cut access racks and carry out selective respacing to favour the best quality trees. The target density should be about 2000 –2500 stems per hectare in young regeneration or on windfirm sites where thinning will take place. On less stable sites that are unlikely to be thinned, a single intervention to a target density of 1750 –2000 stems per hectare should improve mean tree diameter without compromising timber quality. Managing natural regeneration in continuous cover forestry or mixed stands can be based upon similar principles but the growth of the regenerated trees will be more variable. FCPN016 1 Introduction Natural self-thinning Dense natural regeneration of conifers in upland Britain has Management intervention to respace young trees is sometimes become increasingly common as forests planted during the last justified on the basis that stands of dense natural regeneration century reach maturity. The density of naturally regenerated Sitka will ‘stagnate’ if no respacing is carried out. However, with the spruce ( Picea sitchensis ) can exceed 100 000 seedlings per hectare exception of stands of lodgepole pine ( Pinus contorta ) on very on suitable sites in forests throughout northern and western poor-quality sites in Canada, there are few examples of Britain – examples include Fernworthy, Glasfynydd, Radnor, ‘stagnation’ occurring.
    [Show full text]
  • Note by Terry F. Franklin'
    Reprinted from FOREST SCIENCE, Volume 10, Number 1, March, 1964 Purchased by the U.S. Forest Service for official use. Color of Immature Cones of Several Pacific Northwest Conifers Note by Terry F. Franklin Abstract. In the Cascade and Coast Ranges carpa") or green cones (variety chlorocai pa") of Oregon and Washington /Thies amabilis, /1. during their lifetime. Picea glauca is also known lasiocarpa, .1. magnifica var. shastensis, .1. pro- to produce either green or reddish-brown im- cera, Picea engelmannii, Pinus monticola, Pseudo- mature cones. tsuga menziesii, and Tsuga mertensiana can pro- Color variation in immature or mature cones duce immature cones either red (or purple) or has not been studied for western conifers but has green in color. Abundance and distribution of incidentally been noted for Pinus ponderosa, the color varies in each species. Variation in P. monticola /Thies concolor", /Thies grandis, 5 and cone coloration on individual trees is related to Tsuga mertensiana.3.5 The species upon which exposure of the cones to sunlight. 2 Crossley, D. 1. Seed maturity in white spruce. Observations throu ghout the Cascade and Coast Can. Dep. Resour. Developm. For. Br. SiIv. Res. Ranges of Oregon and Washington indicate that Note 104. 16 pp. 1953. the immature cones of many conifers are either red (purple) or green, or some intergrade be- 3 Sudworth, G. B. Forest trees of the Pacific tween. For many years European foresters have slope. Forest Serv., U.S. Dept. A gric. 441 pp. recognized two different forms of Picea abies 1908. which hear either red cones (variety "erythro- 4 McMinn, H.
    [Show full text]
  • Isoenzyme Identification of Picea Glauca, P. Sitchensis, and P. Lutzii Populations1
    BOT.GAZ. 138(4): 512-521. 1977. (h) 1977 by The Universityof Chicago.All rightsreserved. ISOENZYME IDENTIFICATION OF PICEA GLAUCA, P. SITCHENSIS, AND P. LUTZII POPULATIONS1 DONALD L. COPES AND ROY C. BECKWITH USDA Forest Service,Pacific Northwest Forest and Range ExperimentStation ForestrySciences Laboratory, Corvalli.s, Oregon 97331 Electrophoretictechniques were used to identify stands of pure Sitka sprucePicea sitchensis (Bong.) Carr.and purewhite spruceP. glauca (Moench)Voss and sprucestands in whichintrogressive hybridization betweenthe white and Sitka sprucehad occurred.Thirteen heteromorphic isoenzymes of LAP, GDH, and TO were the criteriafor stand identification.Estimates of likenessor similaritybetween seed-source areas were made from 1) determinationsIntrogressed hybrid stands had isoenzymefrequencies that were in- termediatebetween the two purespecies, but the seedlingswere somewhat more like white sprucethan like Sitkaspruce. Much of the west side of the KenaiPeninsula appeared to be a hybridswarm area, with stands containingboth Sitka and white sprucegenes. The presenceof white sprucegenes in Sitka sprucepopula- tions was most easily detectedby the presenceof TO activity at Rm .52. White spruceshowed activity at that positionin 79% of its germinants;only 1% of the pure sitka sprucegerminants had similaractivity. Isoenzymevariation between stands of pure Sitka sprucewas less variablethan that betweeninterior white spruce stands (mean distinctionvalues were 0.11 for Sitka and 0.32 for white spruce). Clusteranalysis showedall six pure Sitka sprucepopulations to be similarat .93, whereaspure white sprucepopulations werenot similaruntil .69. Introduction mining quantitatively the genetic composition of Hybrids between Picea glauca (Moench) Voss and stands suspected of being of hybrid origin would be Sitka spruce Picea sitchensis (Bong.) Carr. were of great use to foresters and researchers.
    [Show full text]
  • Detection of Hybrids in Natural Populations of Picea Glauca and P 119
    Haselhorst and Buerkle: Detection of Hybrids in Natural Populations of Picea Glauca and P 119 DETECTION OF HYBRIDS IN NATURAL POPULATIONS OF PICEA GLAUCA AND PICEA ENGELMANNII MONIA S.H. HASELHORST C. ALEX BUERKLE UNIVERSITY OF WYOMING LARAMIE ABSTRACT within long-lived forest trees such as conifers (Neale and Ingvarsson 2008). Conifers are a large and highly The geographic borders between related species are often overlapping and much is unknown diverse group of gymnosperms that are distributed about the ecological and evolutionary dynamics widely throughout the world with dominance in the between species in these regions. This is particularly northern hemisphere. Although the geographical true within long-lived forest trees such as conifers. ranges of North American conifers in general are well The spruce species Picea glauca and Picea known, many questions remain about the zones engelmannii were used in this study to elucidate the where species come into geographic contact: whether genetic dimension of their hybridization, as these they hybridize, how widespread hybrids are and how species are ecologically divergent and are known to hybrids and parental species can be accurately hybridize in nature. Opportunities for hybridization identified (Daubenmire 1968; Mallet 2005; occur along elevational gradients where they co- Burgarella et al. 2009). Hybridization and subsequent occur, from northwestern Wyoming north through the backcrosses (i.e., introgression) to parental species central Rocky Mountains and British Columbia. This are known to occur between a number of conifer study was concentrated in the Central Rocky species (e.g., Picea glauca x P. engelmannii, Pinus Mountains in Wyoming including the Greater pumila x P.
    [Show full text]
  • WRA Species Report
    Family: Pinaceae Taxon: Picea engelmannii Synonym: Abies engelmannii Parry Common Name: Engelmann spruce Mountain spruce Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -0.5 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Low substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized
    [Show full text]
  • Engelmann Spruce (Se) - Picea Engelmannii
    Engelmann spruce (Se) - Picea engelmannii Tree Species > Engelmann spruce Page Index Distribution Range and Amplitiudes Tolerances and Damaging Agents Silvical Characteristics Genetics and Notes BC Distribution of Engelmann spruce (Se) Range of Engelmann spruce An uneven aged, Engelmann spruce dominated old-growth stand (Duffey Lake Road) Geographic Range and Ecological Amplitudes Description Engelmann spruce is one of the four spruce species indigenous to British Columbia. It is a medium- to large-sized (occasionally >50 m tall), evergreen conifer, with a dense, symmetrical, narrow, spire-like crown; lower branches sloping downward; and a thin, gray-brown bark broken into large, loose, coarse, rounded scales. The wood of Engelmann spruce is used for lumber and pulp. Similar to the other spruces, the pulping properties of Engelmann spruce are excellent: long tracheids, light colour, and low content of resins. Geographic Range Geographic element: Western North American/Cordilleran and marginally Pacific Distribution in Western North America: (central) in the Pacific region; central and south in the Cordilleran region Ecological Climatic amplitude: Amplitudes (alpine tundra) - continental subalpine boreal - montane boreal - (cool temperate) Orographic amplitude: montane - subalpine - (alpine) Occurrence in biogeoclimatic zones: (lower AT), (submaritime MH), ESSF, (MS), (upper SBS), (upper IDF), (upper ICH), (upper submaritime CWH) Edaphic Amplitude Range of soil moisture regimes: (moderately dry) - slightly dry - fresh - moist - very moist - wet Range of soil nutrient regimes: (very poor) - poor - medium - rich - very rich The vigorous growth of Engelmann spruce occurs in soils where calcium and magnesium are available in moderate, well-balanced quantities and on sites with Moder and Mull humus formations. Tolerance and Damaging Agents Root System As with other native spruces, Engelmann has a shallow root system, with most Characteristics roots within 50 cm from the ground surface.
    [Show full text]
  • Bucket Cable Trap Technique for Capturing Black Bears on Prince of Wales Island, Southeast Alaska Boyd Porter
    Wildlife Special Publication ADF&G/DWC/WSP–2021–1 Bucket Cable Trap Technique for Capturing Black Bears on Prince of Wales Island, Southeast Alaska Boyd Porter Stephen Bethune ©2012 ADF&G. Photo by Stephen Bethune. 2021 Alaska Department of Fish and Game Division of Wildlife Conservation Wildlife Special Publication ADF&G/DWC/WSP-2021-1 Bucket Cable Trap Technique for Capturing Black Bears on Prince of Wales Island, Southeast Alaska PREPARED BY: Boyd Porter Wildlife Biologist1 Stephen Bethune Area Wildlife Biologist APPROVED BY: Richard Nelson Management Coordinator REVIEWED BY: Charlotte Westing Cordova Area Wildlife Biologist PUBLISHED BY: Sky M. Guritz Technical Reports Editor ©2021 Alaska Department of Fish and Game Alaska Department of Fish and Game Division of Wildlife Conservation PO Box 115526 Juneau, AK 99811-5526 Hunters are important founders of the modern wildlife conservation movement. They, along with trappers and sport shooters, provided funding for this publication through payment of federal taxes on firearms, ammunition, and archery equipment, and through state hunting license and tag fees. This funding provided support for Federal Aid in Wildlife Restoration Black Bear Survey and Inventory Project 17.0. 1 Retired Special Publications include reports that do not fit in other categories in the division series, such as techniques manuals, special subject reports to decision making bodies, symposia and workshop proceedings, policy reports, and in-house course materials. This Wildlife Special Publication was reviewed and approved for publication by Richard Nelson, Region I Management Coordinator for the Division of Wildlife Conservation. Wildlife Special Publications are available via the Alaska Department of Fish and Game’s public website (www.adfg.alaska.gov) or by contacting Alaska Department of Fish and Game’s Division of Wildlife Conservation, PO Box 115526, Juneau, AK 99811-5526; phone: (907) 465- 4190; email: [email protected].
    [Show full text]
  • Growth and Yield of Sitka Spruce and Western Hemlock at Cascade Head Experimental Forest, Oregon
    United States Department of i Agriculture Growth and Yield of Sitka Forest Service Pacific Northwest Spruce and Western Forest and Range Experiment Station Research Paper Hemlock at Cascade Head PNW-325 September 1984 Experimental Forest, Oregon Stephen H. Smith, John F. Bell, Francis R. Herman, and Thomas See Authors STEPHEN H. SMITH was a graduate student, College of Forestry Oregon State University, Corvallis, Oregon. He is now with Potlatch Corporation, Lewiston, Idaho. JOHN F. BELL is a professor, Forest Management, College of Forestry, Oregon State University, Corvallis, Oregon. FRANCIS R. HERMAN is a mensurationist, retired, Pacific Northwest Forest and Range Experiment Station, Fairbanks, Alaska. THOMAS SEE was a graduate student, College of Forestry, Oregon State University, Corvallis, Oregon. He is now with Continental Systems, Inc., Portland, Oregon. Abstract Summary Smith, Stephen H.; Bell, John F.; Sitka spruce (Picea sitchensis (Bong.) Herman, Francis R.; See, Thomas. Carr.) and western hemlock (Tsuga Growth and yield of Sitka spruce heterophylla (Raf.) Sarg.) are the and western hemlock at Cascade principal components of the Pacific Head Experimental Forest, Oregon. Northwest coastal fog belt type (Meyer Res. Pap. PNW-325. Portland, OR: 1937) or the Picea sitchensis zone U.S. Department of Agriculture, (Franklin and Dyrness 1973) found Forest Service, Pacific Northwest along the Oregon and Washington Forest and Range Experiment Sta- coasts. The tremendous potential for tion; 1984. 30 p. rapid growth and high yield of the Sitka spruce-western hemlock type A study established in 83-year-old, ranks it among the most productive even-aged stands of Sitka spruce coniferous types in the world.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Engelmann Spruce, One of the Light- Est of All the Important Commercial Woods in the United States, Is Soft, Machines Well, and Has Low Shrinkage and Uniform Color
    Forest Service Engelmann An American Wood United States Department of Agriculture Spruce FS-264 Engelmann spruce, one of the light- est of all the important commercial woods in the United States, is soft, machines well, and has low shrinkage and uniform color. The wood closely resembles that of the eastern spruces in appearance and properties and, like them, has excellent pulping properties. It is used principally in home construc- tion for framing, sheathing, interior paneling, and exterior trim; for ply- wood manufacture, food containers, and specialty items; and for pulp and paper. F-320890 An American Wood Engelmann Spruce (Picea engelmannii Parry ex. Engelm.) Donald C. Markstrom and Robert R. Alexander1 Distribution Engelmann spruce, a major compo- nent of the high-elevation Rocky Mountain forests, is widely distributed in the western United States and two Provinces in Canada. It grows in the Rocky Mountains of southwestern Al- berta south through the high mountains of eastern Washington and Oregon, Idaho, western Montana, to western and central Wyoming, and in the high mountains of southern Wyoming, Colo- rado, Utah, eastern Nevada, New Mex- ico, and northern Arizona (fig. 1). In the Pacific Northwest, Engelmann spruce grows along the east slope of the Coast Range from west-central British Columbia, south along the crest and east slope of the Cascade Range through Washington and Oregon to northern California. It is a minor com- ponent of these high-elevation forests. Engelmann spruce is found most typ- ically in association with subalpine fir (Abies lasiocarpa) and with it forms the Engelmann spruce-subalpine fir forest type.
    [Show full text]