Studies Toward the Total Synthesis of (±)-Α-Yohimbine by Double Annulation

Total Page:16

File Type:pdf, Size:1020Kb

Studies Toward the Total Synthesis of (±)-Α-Yohimbine by Double Annulation University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2010 STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION Raghu Ram Chamala University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Chamala, Raghu Ram, "STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION" (2010). University of Kentucky Doctoral Dissertations. 78. https://uknowledge.uky.edu/gradschool_diss/78 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Raghu Ram Chamala The Graduate School University of Kentucky 2010 STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Raghu Ram Chamala Lexington, KY Director: Dr. R. B. Grossman, Professor of Chemistry Lexington, KY 2010 Copyright © Raghu Ram Chamala 2010 ABSTRACT OF DISSERTATION STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION The indole alkaloids, a class of natural products, have received much synthetic attention for years due to their diverse structures and interesting biological properties. We are particularly interested in synthesizing some of the yohimbine alkaloids extracted from the bark of a tall evergreen African tree (Corynanthe yohimbe, commonly known as fringe tree). Yohimbine and its stereoisomers have been tempting targets for synthetic organic chemists for more than fifty years. These compounds feature a pentacyclic ring system with two heteroatoms and five stereogenic centers. Broadly, the fifteen different synthetic approaches that led to the successful completion of yohimbine alkaloids relied only on two basic synthetic strategies. In the first strategy, the last step almost always was the formation of the C(2)-C(3) bond by either Pictet-Spengler reaction or by Bischler-Napieralski reaction with the concomitant formation of the C ring. The second strategy involved the annulation of the D and E rings onto the intact ABC ring system. With our double annulation methodology, herein, we report a completely different synthetic approach to access the yohimbine alkaloids, and our disconnections are not even remotely close to the synthetic designs used in the past. Our key steps include double Michael reaction to construct the E ring, an intramolecular cyclization to construct the D ring, and finally, the functionality on the D ring can be elaborated to form the C ring of the yohimbine alkaloids. KEYWORDS: Yohimbehe, Yohimbine, Double Annulation, Double Michael Reaction, Total Synthesis Raghu Ram Chamala Student‟s Signature November 22, 2010. Date STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION By Raghu Ram Chamala Dr. Robert B. Grossman, Ph.D Director of Dissertation Dr. John E. Anthony, Ph.D Director of Graduate Studies November 22, 2010. Date RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date DISSERTATION Raghu Ram Chamala The Graduate School University of Kentucky 2010 STUDIES TOWARD THE TOTAL SYNTHESIS OF (±)-α-YOHIMBINE BY DOUBLE ANNULATION DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Raghu Ram Chamala Lexington, KY Director: Dr. R. B. Grossman, Professor of Chemistry Lexington, KY 2010 Copyright © Raghu Ram Chamala 2010 Dedicated With Love And Respect To My Dear Parents Smt. RAJESHWARI CHAMALA And Shri. NARAYANA CHAMALA ACKNOWLEDGEMENTS This is by far the most important part of my dissertation. This dissertation is a culmination of an amazing journey that wouldn‟t have been possible without the help and support of several people. So it is with tremendous gratitude that I write these acknowledgements to show my appreciation to the people who have helped me throughout the years. First and foremost, I wholeheartedly thank my advisor Dr. Robert B. Grossman for his unwavering support, enthusiasm, and general concern for my development as an organic chemist. I have immeasurably benefited from his wisdom, and his dedication and passion to produce “good science” are inspiring. It has been a great privilege to work under his tutelage. I also would like to thank my dissertation committee: Dr. Arthur Cammers, Dr. Folami Ladipo, and Dr. Jürgen Rohr. I especially like to thank Dr. Arthur Cammers, for teaching me a great deal about organic synthesis in his advanced synthetic chemistry class, for his thoughtful insights, and entertaining group meetings in the initial years of my graduate school. I only wished we continued our group meetings together and did more of those “Synthetic Challenge” assignments. I would also like to thank Dr. Robert Houtz for serving as my outside examiner. I thank Mr. John Layton for his assistance in obtaining several NMR spectra, and Dr. Sean Parkin for obtaining all of my crystal structures. I would like to thank Dr. Fitzgerald Bramwell and Dr. Manjiri Patwardhan for their help and support. I thank all the office and the technical staff, especially, the ever-energetic, Mr. Art Sebesta for providing the technical support to our lab. I am grateful to the Department of Chemistry, University of Kentucky for giving me an opportunity to pursue my graduate career. I gratefully acknowledge the financial assistance I received in support of my research from the Department of Chemistry, the Research Challenge Trust Fund, the National Institutes of Health, the National Science Foundation, and the Pearson Education. I would like to thank my former lab mates, Dr. Freddie Hughes Jr., Dr. Roxana Ciochina, Mr. Uma Prasad Mallik, Dr. Syed Raziullah Hussaini, Dr. Suresh Jayasekara, Mr. Ronghua Lu, and Mr. Sujit Pawar for all their help and support in the lab. I would like to thank all my childhood teachers, and special thanks to my organic chemistry teacher, Dr. Ashok (Professor, Department of Chemistry, Osmania University), for his unique and exhilarating teaching method that inspired and enabled me to choose my career path. Also, my special thanks to my guru-cum-friend, the ever-youthful, Mr. Srinivasa Rao Deshpande (fondly called “Master” garu). I will forever be grateful for all his help, support, and encouragement. Throughout my life, I am fortunate enough to have developed some great friendships that helped me define myself. One of my good friends, Mr. Gangadhara Srinivas Annambhotla, is the root cause for my liking and understanding of the basic organic chemistry. He kindled my interest by initiating and leading several months of daily peer study at his home. Gorging out oodles of scratch paper, we together learned drawing out organic reaction mechanisms, and all this effort consequently led me to pursue my PhD in organic chemistry. I will forever be grateful for his help. The caring and the mirthfully mischievous, Dr. Pramod Nednoor, was my classmate at University of Pune; since then, with the passing time, we travelled our individual career paths together, iii nurturing our springing relationship into an everlasting friendship. I thank him very much for that amazing time we spent at the University of Pune and at the University of Kentucky, and also for his substantial role in my career growth. I would like to thank my noble-hearted friend, Dr. Maruthi Krishna Prakash Chittapragada, for all his help, for his ever-witty chat, and of course for our Ghantasala singing sessions over the hostel roof (just a prudent practice to keep our “golden” voices away from the innocent people). Mr. Mayuresh Moghe, the ever-blissful, eased out the enormous stress in the initial years of my graduate school. I can never forget his friendship or those 2 AM-dinners, coffee at Huddle House (South Limestone/Maxwell) while solving assignments and studying for the exams. I thank him for those gleeful couple of years. I like to thank the powerhouse of largely undiscovered talent, Dr. Gururaj Joshi, and the inimitable, Mr. Navneeth Singh Daundikhed, for their friendship and also for satiating my music palate by introducing me to the legendary maestros of Ghazals. My friend, Smt. Laxmi Sirisha Sadhu, though submerged with loads of work, being a software professional, wife, and mother of cute little Prabhav, always finds time to call me up and know my well-being. I thank for her concern and words of encouragement. I thank Mr. Suman Kumar Pulusu, an expression of free spirit, for overwhelming this itinerant with his extremely gracious gesture of hospitality. I would like to thank Mr. Vinay Srinivas Adepu for his concern and ever- entertaining phone conversations. I also would like to thank all my other friends, especially, Mr. Venkata Rajni Srikanth Vemuri, Dr. Gnaneswar Yadav Duggeni, and Mr. Narayana Reddy Bongunuri, for their help and support. I and my family will forever be grateful and indebted to these extremely generous and magnanimous people, Smt.
Recommended publications
  • Metabolism and Pharmacokinetics in the Development of New Therapeutics for Cocaine and Opioid Abuse
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse Pradeep Kumar Vuppala University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Vuppala, Pradeep Kumar, "Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse" (2012). Electronic Theses and Dissertations. 731. https://egrove.olemiss.edu/etd/731 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. METABOLISM AND PHARMACOKINETICS IN THE DEVELOPMENT OF NEW THERAPEUTICS FOR COCAINE AND OPIOID ABUSE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Department of Pharmaceutics The University of Mississippi by PRADEEP KUMAR VUPPALA April 2012 Copyright © 2012 by Pradeep Kumar Vuppala All rights reserved ABSTRACT Cocaine and opioid abuse are a major public health concern and the cause of significant morbidity and mortality worldwide. The development of effective medication for cocaine and opioid abuse is necessary to reduce the impact of this issue upon the individual and society. The pharmacologic treatment for drug abuse has been based on one of the following strategies: agonist substitution, antagonist treatment, or symptomatic treatment. This dissertation is focused on the role of metabolism and pharmacokinetics in the development of new pharmacotherapies, CM304 (sigma-1 receptor antagonist), mitragynine and 7-hydroxymitragynine (µ-opioid receptor agonists), for the treatment of drug abuse.
    [Show full text]
  • Alpha^ and Beta^Blocking Agents: Pharmacology and Properties
    CURRENT DRUG THERAPY DONALD G. VIDT, MD AND ALAN BAKST, PharmD, EDITORS Alpha^ and beta^blocking agents: pharmacology and properties PROFESSOR B.N.C. PRICHARD • Adrenergic receptors have been separated into alpha and beta groups, which have then been further subdivided. Agents have been developed that block each type of receptor with varying degrees of specificity between the sub-types, leading to differences in pharmacodynamic profile. A more recent innovation has been the development of multiple action beta-blocking drugs, ie, those not only blocking the beta receptors but also posessing a peripheral vasodilator effect that may be due to alpha blockade, beta-2 stimulation, or a vasodilator action independent of either alpha or beta receptors. • INDEX TERMS: ALPHA BLOCKERS; BETA BLOCKERS; HYPERTENSION • CLEVE CLIN ] MED 1991; 58:33 7-350 HE CONCEPT that binding of Rosenblueth suggested that a transmitter released at catecholamines to receptors leads to differ- sympathetic nerve endings produced either inhibitory ing responses was first described by Langley, or excitatory responses as a result of combination with who in 1905 noted that a cell may make sympathin I or sympathin E at the receptor.3 Tmotor or inhibitory substances or both, and that "the The current classification of alpha and beta respon- effect of a nerve impulse depends upon the proportion ses is based on the classic work of Ahlquist,4 who of the two kinds of receptive substance which is af- studied six sympathomimetic amines and found two fected by the impulse."1 In 1906, Dale reported that patterns of reactivity. One group of actions, mediated ergot blocked the excitatory but not the inhibitory ac- by what were termed "alpha receptors," were principally tions of adrenaline.2 In 1933, Cannon and excitatory.
    [Show full text]
  • Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
    Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors.
    [Show full text]
  • United States Patent (19) (11) 4,310,524 Wiech Et Al
    United States Patent (19) (11) 4,310,524 Wiech et al. 45 Jan. 12, 1982 (54) TCA COMPOSITION AND METHOD FOR McMillen et al., Fed. Proc., 38,592 (1979). RAPD ONSET ANTDEPRESSANT Sellinger et al., Fed. Proc., 38,592 (1979). THERAPY Pandey et al., Fed. Proc., 38,592 (1979). 75) Inventors: Norbert L. Wiech; Richard C. Ursillo, Primary Examiner-Stanley J. Friedman both of Cincinnati, Ohio Attorney, Agent, or Firm-Millen & White 73) Assignee: Richardson-Merrell, Inc., Wilton, Conn. (57 ABSTRACT A method is provided for treating depression in a pa (21) Appl. No.: 139,498 tient therefrom and requiring rapid symptomatic relief, (22 Filed: Apr. 11, 1980 which comprises administering to said patient concur 51) Int. Cl. .................... A61K 31/33; A61K 31/135 rently (a) an effective antidepressant amount of a tricy clic antidepressant or a pharmaceutically effective acid (52) ...... 424/244; 424/330 addition salt thereof, and (b) an amount of an a-adrener 58) Field of Search ................................ 424/244, 330 gic receptor blocking agent effective to achieve rapid (56) References Cited onset of the antidepressant action of (a), whereby the PUBLICATIONS onset of said antidepressant action is achieved within Chemical Abst., vol. 66-72828m, (1967), Kellett. from 1 to 7 days. Chemical Abst, vol. 68-94371a, (1968), Martelli et al. A pharmaceutical composition is also provided which is Chemical Abst., vol. 74-86.048j, (1971), Dixit et al. especially adapted for use with the foregoing method. Holmberg et al., Psychopharm., 2,93 (1961). Svensson, Symp. Med. Hoechst., 13, 245 (1978). 17 Claims, No Drawings 4,310,524 1.
    [Show full text]
  • Effect of Repeated MDMA Exposure on Rat Brain and Behaviour
    Effect of repeated MDMA exposure on rat brain and behaviour by Ross van de Wetering A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington, New Zealand 2020 Table of contents Absract ........................................................................................................................... 5 List of abbreviations ...................................................................................................... 7 CHAPTER 1: GENERAL INTRODUCTION ............................................................ 10 Introduction ........................................................................................................................ 10 Behavioural fundamentals of addiction ........................................................................... 12 Studying addiction ........................................................................................................... 13 Self-administration. ...................................................................................................... 14 Behavioural sensitisation. ............................................................................................ 18 Neurocircuitry of addiction ............................................................................................... 20 Ventral tegmental area and nucleus accumbens .............................................................. 20 Dopamine and reinforcement. .....................................................................................
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]
  • Neuropharmacology and Toxicology of Novel Amphetamine-Type Stimulants
    Neuropharmacology and toxicology of novel amphetamine-type stimulants Bjørnar den Hollander Institute of Biomedicine, Pharmacology University of Helsinki Academic Dissertation To be presented, with the permission of the Medical Faculty of the University of Helsinki, for public examination in lecture hall 2, Biomedicum Helsinki 1, Haartmaninkatu 8, on January 16th 2015 at 10 am. Helsinki 2015 Supervisors Thesis committee Esa R. Korpi, MD, PhD Eero Castrén, MD, PhD Institute of Biomedicine, Pharmacology Neuroscience Center Faculty of Medicine University of Helsinki P.O. Box 63 (Haartmaninkatu 8) P.O. Box 56 (Viikinkaari 4) 00014 University of Helsinki, Finland 00014 University of Helsinki, Finland Esko Kankuri, MD, PhD Sari Lauri, PhD Institute of Biomedicine, Pharmacology Neuroscience Center and Faculty of Medicine Department of Biosciences/ Physiology P.O. Box 63 (Haartmaninkatu 8) University of Helsinki 00014 University of Helsinki, Finland P.O.Box 65 (Viikinkaari 1) 00014 University of Helsinki, Finland Reviewers Dissertation opponent Atso Raasmaja, Professor, PhD Prof David Nutt DM FRCP FRCPsych Division of Pharmacology and FMedSci Pharmacotherapy Edmond J. Safra Chair of Faculty of Pharmacy Neuropsychopharmacology P. O. Box 56 (Viikinkaari 5E) Division of Brain Sciences 00014 University of Helsinki, Finland Dept of Medicine Imperial College London Petri J. Vainio, MD, PhD Burlington Danes Building Pharmacology, Drug Development and Hammersmith Hospital Therapeutics Du Cane Road Institute of Biomedicine London W12 0NN, United Kingdom Faculty of Medicine Kiinamyllynkatu 10 C 20014 University of Turku, Finland The cover layout is done by Anita Tienhaara. The cover photo is by Edd Westmacott and shows a close-up of ecstasy tablets, photographed in Amsterdam in 2004.
    [Show full text]
  • Highly Efficient Camphor-Derived Oxaziridines for the Asymmetric
    Highly Efficient Camphor-Derived Oxaziridines for the Asymmetric Oxidation of Sulfides to Chiral Sulfoxides Vassilios Meladinis, Uwe Verfürth, and Rudolf Herrmann* Organisch-Chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching, Bundesrepublik Deutschland Dedicated to Prof. Dr. Ivar Ugi on the occasion o f his 60th birthday Z. Naturforsch. 45b, 1689- 1694 (1990); received May 18, 1990 Asymmetric Oxidation, N-Sulfonyl-oxaziridines, Chiral Sulfoxides, Camphorsulfonic Acid Chiral N-sulfonyl-oxaziridines derived from 8 -camphorsulfonic acid and fenchone have been evaluated as asymmetric oxidizing agents for the conversion of sulfides to chiral sulf­ oxides. There is no correlation between the redox potentials nor the lvO NMR chemical shifts of the oxaziridines and their relative oxidation rates, nor with the enantiomeric excesses achieved, indicating that steric effects are responsible for their behaviour. The results are con­ sistent with an attack of one sulfur lone pair at the oxaziridine oxygen in such a way that both sulfur lone pairs lie in the plane of the oxaziridine ring. The most efficient oxaziridines, the camphorlactone-sulfonyloxaziridine [(4aS,9aR)-10,10-dimethyl-6,7-dihydro-4H-4a,7-meth- ano-oxazirino[3,2-j]oxepino[3,4-c]isothiazol-9(5 H)-one 3,3-dioxide] and the 3-endo-bromo- camphorsulfonyloxaziridine [(4aS,8 S ,8 aR)-8-bromo-9,9-dimethyl-5,6,7,8-tetrahydro-4 H- 4a,7-methano-oxazirino-2,l-benzisothiazole 3,3-dioxide] allow the preparation of chiral sul­ foxides with up to 85% enantiomeric excess. Introduction crowded oxaziridines activated by an electron- Chiral sulfoxides play a prominent role among withdrawing sulfonyl group at nitrogen give the the chiral auxiliaries used for the synthesis of enan- best results.
    [Show full text]
  • Synthesis of New Camphor-Based Auxiliaries
    UNIVERSITY OF HAWAllllB~ PART 1: SYNTHESIS OF NEW CAMPHOR-BASED AUXILIARIES PART 2: ISOMERIZATION / CYCLIZATION OF ACETYLENIC KETONES TO CYCLOPENTENONES A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY MAY 2003 By Jeremy S. Forest Thesis Committee: Marcus A. Tius, Chairperson Thomas K. Hemscheidt Craig M. Jensen ACKNOWLEDGEMENTS I would first like to give my sincere thanks to my advisor, Dr. Marcus A. Tius. His endless guidance and support inside the laboratory are lessons that I will carry along forever in my journey through life. I would also like to thank the members of my dissertation committee for their time and effort. I would like to extend a special thanks to Dr. Thomas Hemscheidt for his tireless efforts in the review of this thesis. Many thanks go to Wesley Yoshida and Mike Burger for their help in obtaining NMR and mass spectra. I would also like to thank the members of the Tius group, especially Brad Tokeshi, Cisco Bee, Frank Cordaro, and Eric LeClerc, for their endless help and companionship during my time here. Once again, I would like to thank Dr. Marcus A. Tius for his generous financial support in the form of a research assistantship. I cannot take full credit for this work without recognizing my parents, Bill and Felicia. Their unconditional love and support has kept me going in everything that I do. Finally, I have to thank the fellas: Dave, Scott, Nick, Mitch, and brother Josh. They always believed in me and encouraged me to work through the good and the bad.
    [Show full text]
  • Potentiation of Yohimbine-Induced Lethality in Mice: Predictor of Antidepressant Potential
    Drug Development Research 3:357-363 (1983) Potentiation of Yohimbine-Induced Lethality in Mice: Predictor of Antidepressant Potential Jeffrey B. Malick Biomedical Research Department, Stuart Pharmaceuticals, Division of ICI Americas, Inc., Wilmington, Delaware ABSTRACT Malick, J.B.: Potentiation of yohimbine-induced lethality in mice: Predictor of antidepres- sant potential. Drug Dev. Res. 3:357-363, 1983. The ability of antidepressant agents to potentiate the lethal or toxic effects of yohimbine in mice was evaluated. With very few exceptions, the antidepressants were the only agents that significantly enhanced yohimbine-induced lethality. All of the clinically effective anti- depressants, both typical (e.g., amine reuptake inhibitors, monoamine oxidase inhibitors) and atypical (e.g., mianserin, iprindole, bupropion, quipazine) drugs, produced a dose- related potentiation of yohimbine in mice. Representative anxiolytics and antipsychotics failed to potentiate yohimbine over a wide range of doses. Although several possible “false positives” (e.g., atropine, chlorpheniramine, and d-amphetamine) would be detected in this procedure, these same agents would be detected in other models (e.g., tetrabenazine antagonism, behavioral despair) considered predictive of antidepressant potential. Thus, the potentiation of yohimbine-induced lethality test in mice appears to represent a useful screening procedure for discovering potential antidepressant drugs. Key words: yohimbine, antidepressants, potentiation INTRODUCTION Antidepressants potentiate
    [Show full text]
  • Alkaloids Used As Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look
    molecules Review Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look Michael Heinrich 1,2,* , Jeffrey Mah 1 and Vafa Amirkia 1 1 Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy, University of London, 29–39 Brunswick Sq., London WC1N 1AX, UK; [email protected] (J.M.); [email protected] (V.A.) 2 Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung 406040, Taiwan * Correspondence: [email protected]; Tel.: +44-20-7753-5844 Abstract: Selecting candidates for drug developments using computational design and empirical rules has resulted in a broad discussion about their success. In a previous study, we had shown that a species’ abundance [as expressed by the GBIF (Global Biodiversity Information Facility)] dataset is a core determinant for the development of a natural product into a medicine. Our overarching aim is to understand the unique requirements for natural product-based drug development. Web of Science was queried for research on alkaloids in combination with plant systematics/taxonomy. All alkaloids containing species demonstrated an average increase of 8.66 in GBIF occurrences between 2014 and 2020. Medicinal Species with alkaloids show higher abundance compared to non-medicinal alkaloids, often linked also to cultivation. Alkaloids with high biodiversity are often simple alkaloids found in multiple species with the presence of ’driver species‘ and are more likely to be included in early-stage drug development compared to ‘rare’ alkaloids. Similarly, the success of an alkaloid Citation: Heinrich, M.; Mah, J.; Amirkia, V.
    [Show full text]
  • South Cameroon)
    Plant Ecology and Evolution 152 (1): 8–29, 2019 https://doi.org/10.5091/plecevo.2019.1547 CHECKLIST Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon) Vincent Droissart1,2,3,8,*, Olivier Lachenaud3,4, Gilles Dauby1,5, Steven Dessein4, Gyslène Kamdem6, Charlemagne Nguembou K.6, Murielle Simo-Droissart6, Tariq Stévart2,3,4, Hermann Taedoumg6,7 & Bonaventure Sonké2,3,6,8 1AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France 2Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. 3Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium 4Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium 5Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium 6Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon 7Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon 8International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon *Author for correspondence: [email protected] Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land- use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae.
    [Show full text]