Gamow Og Alpher Rokna Kjarnasamruna Í Big-Bang

Total Page:16

File Type:pdf, Size:1020Kb

Gamow Og Alpher Rokna Kjarnasamruna Í Big-Bang Gamow og Alpher rokna kjarnasamruna í Big-Bang George Gamow kajakk. Eisini ein onnur roynd at fara hitin fellur, tættleikin minkar, og Bethe sum rithøvund. Bethe hevði Pól Jespersen Sovjetiski, amerikanski alisfrøðingurin úr Murmansk til Noregs miseydnast. partikkulsamansetingin broytist. Krøvini annars einki havt við hetta arbeiðið Gamow, 1904-1968, var ættaður úr Í 1933 verður Gamow boðin at taka til støddfrøðiligan kunnleika eru stór. at gera. Soleiðis bar tað til, at rit- Odessa í Ukreina. Av lyndi var hann lut á Solvay-fundi fyri alisfrøðingar Hóast Gamow er millum fremstu høvundarnir til hesa marksetandi grein Altjóða ein íspegil. Stundum var skemt hansara í Brüssel. Hann fær við tógvið stríð alisfrøðingar, er støddfrøði ikki tað, stóðu at vera Alpher, Bethe og Gamow. stjørnufrøðiár 37 reiðiliga grovt. Tað var helst ein av skipað so fyri, at konan skal sleppa hann er stinnastur í. Og rokniamboð Tað varð sjálvandi kastað Gamow orsøkunum, at hesin maðurin, sum við sum skrivari. Tá eydnast teimum eru ikki til taks sum nú á døgum. og Alpher fyri, at grundevnabýtið, Ukreinski alisfrøðingurin Gamow, saman við øðrum á reint ástøðiligum at rýma. Í 1945 fær hann ta hjálp, honum sum teir høvdu roknað, var kent sum eina tíð hevur lisið hjá sjálvum grundarlagi gjørdi eina ta ótrúligastu Eftir hetta heldur hann fyrilestrar tørvar. Hin ungi Ralph Asher Alpher, frammanundan. Hevði borið til at Friedman í Leningrad, rýmir saman forsøgn (um kosmisku baksýnisgeisl- í París og í London, og frá 1934 til 1921-2007, ætlar at vinna sær doktara- grundað onkra forsøgn á Big-Bang við konu sínari úr Sovjetsamveldinum ingina, sjálva eftirglóðina eftir Big- 1956 er hann professari á George heiti undir leiðslu Gamows. Alpher ástøðið um eitthvørt, sum eingin visti í 1933. Eftir hetta starvast hann Bang), sum seinni varð eftirvíst við Washinton University í Washington er stinnur í støddfrøði og hevur gott um, høvdu teir sjálvandi staðið sterkari. í USA. Í marksetandi grein frá 1948 eygleiðingum, ikki altíð fekk ta viður- DC. Í 1940 fær hann ríkisborgararætt eyga fyri smálutum. Gamow setir hann Upp í samstarvið ímillum Gamow vísa hann og næmingur hansara kenning, sum hann hevði uppiborið. í USA, og frá 1956 arbeiðir hann á at rokna Big-Bang kjarnasamruna, og Alpher var nú komin amerikanski Ralph Alpher, at við Big-Bang at University of Colorado í Boulder. sum sambært Gamow bara kann fara vísindamaðurin Robert Herman, 1914- ástøðinum sum grundarlagi ber fram í einum ávísum hitaglugga og 1997. Alpher og Herman skriva í 1949 til at skilja tað býtið, sum er ímillum Kjarnasamruni eftir Big-Bang einum tíðarglugga. At byrja við er eina grein, har teir koma við einari hydrogen og helium, og hví hesi Belgiski presturin Lemaître hevði í- ov heitt, at protonir og nevtronir kunnu ótrúligari forsøgn. Tá ið atomkjarnarnir bæði lættastu grundevnini eru megin- myndað sær alheimsupphavið sum koma saman. Seinni er hitin passaligur, vórðu gjørdir fáar minuttir eftir Big- parturin av øllum tilfari (grund- eitt frumatom, sum gekk sundur. og seinni aftur er hitin ov lágur. Tíðar- Bang, vóru í alheiminum hydrogen- Kanska í onkrari tilgongd, sum líktist evnum) í alheiminum treytin kemst av, at nevtronir eru kjarnar, heliumkjarnar og leysar elektron- geislavirknum tilgongdum, har ið tungir óstøðugar, sita tær ikki í einum kjarna. ir. Hitin var framvegis milliónir stig, óstøðugir kjarnar fara sundur í smærri Gera tær ikki tað, fána tær til protonir so hugsingur var ikki um, at elektronirnar kjarnar og lata frá sær orku. Lemaître og elektronir, og hetta gongur skjótt, kundu binda seg at kjarnunum. Til Tá ið granskarar við spektroskopiskum amboðum høvdu fingið skil á grund- hevði einki uppskot um, hvussu tí helvtartíðin er bara um leið 10 minuttir. tess var alt ov heitt. Umframt partiklarnar evnabýtinum í rúmdini, varð greitt, hydrogen kundi verða til helium í Big- Tað merkir, at talið á fríum nevtronum vóru eisini fotonir, t.e. elektromagnetisk at kosmiska grundevnabýtið er heilt Bang. minkar niður í helvt eftir hvørjar 10 geisling. Geislingin hevði tó ikki frítt øðrvísi enn í tilfari, sum t.d. himmal- Gamow dámdi ikki hetta hugskotið minuttir. at fara, tí fotonirnar samvirkaðu alla knøttir og vit menniskju eru gjørd um eina fissiónsbyrjan, tí hevði gongdin úr, sí talvuna. verið soleiðis, skuldi heimurin verið fullur í miðaltungum kjarnum. Var Georgiy Antonovich Gamov, 1904-1968, tað ikki natúrligari at ímynda sær eina Grundevni Lutfalslig sum var ættaður úr Odessa, var navn- byrjan bara við hydrogen, við tað at atomtøl framur atomgranskari og kjarnagransk- hetta grundevnið roknað eftir atomtali ari. Er serliga kendur fyri arbeiði sítt framvegis var um 90% av øllum tilfari? viðvíkjandi Big-Bang ástøðinum og fyri Hydrogen 10.000 Gamow granskar fusiónstilgongdirnar Helium 1.000 fólksligu skriving sína um trupul alisfrøðilig evni. í stjørnunum og skilur, at hóast stjørn- Oxygen 6 urnar fáa orku sína úr fusiónstilgongdum, Carbon 1 Tíðliga vísti hann áhuga fyri náttúru- sum gera hydrogen um til helium, Øll onnur < 1 vísindunum. Pápin hevði givið honum so er hetta ikki orsøkin, at fjórðingurin eitt lítið mikroskop, sum hann brúkti av øllum tilfari eftir nøgd er helium, Talvan skal skiljast soleiðis, at fyri dúgliga at kanna ymiskt. Einaferð, t.d. í sólini. Stundir hava rætt og slætt hvørji 10.000 hydrogenatom eru um Gamow hevði verið til altars, goymdi ikki verið til at gera alt tað helium, leið 1.000 heliumatom, 6 oxygenatom, hann altarbreyðið og altarvínið í kjálk- sum sólin hevur í sær. Meginparturin 1 carbonatom og av øllum øðrum grund- anum, meðan hann rann heim at kanna av tí helium, sum er í sólini, hevur evnum minni enn 1 atom! Verður roknað hetta tilfarið í mikroskopinum, um longu verið til taks, tá ið sólin varð eftir nøgd, verður tað til, at um leið tað kundi verða umbroytt til likam til! Kanska stavaði heliuminnihaldið tríggir fjórðingar eru hydrogen, um og blóð Krists. Hann sá ongan mun í alheiminum frá fusiónstilgongdum ein fjórðingur er helium og eitt sløð á hesum tilfarinum og vanligum breyði í sjálvari Big Bang hendingini? av øðrum evnum. Stóri spurningurin og víni. Gamow segði seinni, at hann Fyrst í 1940-árunum fer Gamow var nú, hvussu tað kundi bera til, at helt, at tað var henda royndin, sum av álvara undir ætlan sína at fáa greiði grundevnabýtið var so serstakt. Hví gjørdi seg til vísindamann. á tí, sum hendi eftir Big-Bang. Hann Myndin vísir Robert Herman vinstrumegin og Ralph Alpher høgrumegin. Herman var komin upp í samstarvið millum Gamow og Alpher. Í miðjuni er nógv mest til, 99,9 % roknað eftir Eina aðra ferð skapti hann øsing stendur heldur einsamallur við sínari ein (Cointreau) fløska við Ylem. Hetta var heitið, Gamow hevði sett á frumsuppuna atomtali, av teimum báðum lættastu við at siga, at bústaður Guds mundi verkætlan. Næstan allir teir fremstu av elektronum, protonum og nevtronum. Í ylem-tokuni mynd av skemtaranum og einfaldastu grundevnunum. Við vera 9,5 ljósár burturi. Frágreiðingin atomgranskararnir í vesturheiminum Gamow. nútíðar eftirklókskapi kunnu vit kanska skuldi vera, at tá ið kríggið millum eru farnir til Los Alamos at fáa til vega siga, at hetta boðar eyðsýnt frá einari Japan og Russland brast á í 1904, heittu eina atombumbu. Sjálvur er hann í Ukreinski lærumeistarin og dugnaligi tíðina við leysu elektronirnar. Hetta kosmiskari skapanartilgongd. kirkjurnar á fólk um at biðja fyri, at hesum sambandi settur á svartalista, næmingur hansara fáa til vega nýggjastu broytist tó, tá ið eini 380.000 ár eru Japan varð lagt í oyði. Bønir og vreiði tí hann hevur verið yvirmaður í reyða vitanina um atomheimin og stríðast farin. Tá er hitin fallin so mikið, at Grundevnagerð í stjørnunum Guds gingu sambært Gamow ætlandi herinum. Hóast hann bara hevur undir- við útrokningarnar. Trý ar seinni eru elektronirnar kunnu binda seg at kjarn- Fyrstur at rokna við kjarnatilgongdum við ljósferð, og ikki fyrr enn í 1923 víst russiskum hermonnum í alisfrøði, teir komnir á mál. Úrslitið hjá teimum unum at gera nevtral atom. Eftir tað í stjørnunum var Friedrich Georg var Kanto-jarðskjálvtin í Japan! og hóast eingin ivi er um politiska er, at tá ið kjarnasamrunin í Big-Bang hevur geislingin frítt at fara. Geislahitin Houtermans, 1903-1966. Hann og Gamow lesur fyrst í Odessa. Í 1923 samhuga hansara, verður hann mettur er av, er gjørdur ein heliumkjarni fyri er um hetta mundið um 3000 K. Nú bretin Robert Atkinson viðgera í 1929 fer hann til Leningrad at lesa hjá at vera ein trygdarvandi. um leið hvørjar 10 hydrogenkjarnar, fer geislingin sína leið í alheiminum, fusiónstilgongdir í stjørnunum. Stóri Friedmann. Har man hann hava fingið Gamow hugsar sær fyrst filmin og at 99,9% av øllum tilfari í alheim- sum alsamt víðkast, geislingin kólnar, spurningurin um hetta mundið er, um góðan kosmologiskan íblástur. Skjótt spældan aftureftir. Tá ið alheimurin inum eru tey bæði grundevnini hydrogen og myrkur legst um alheimin, sum umstøður munnu vera í stjørnunum hevur gávuríki maðurin úr Odessa víðkast, hevur hann verið tættari fyrr, og helium, júst sum kanningarnar vísa. verður gjøgnumskygdur. Henda geisl- til fusiónstilgongdir. Er tættleikin nóg vunnið sær navn sum ein av heimsins og heitari. Tættleiki og hiti hava kanska Spurningurin um tey tungu grundevnini ingin, siga Herman og Alpher, er í stórur og er hitin nóg høgur? Tað veit fremstu atomkjarnagranskarum. Men einaferð verið soleiðis, at bara teir ein- er framvegis óloystur. allar ævir dømd at vera til staðar í al- eingin enn við vissu. Seinni taka Hans honum leiðist við royndirnar hjá faldastu atompartiklarnir hava verið Greinin við úrslitunum hjá teimum heiminum. Teir rokna, at geislaleivdin A. Bethe og aðrir táttin upp, og tá ið Sovjetsamveldinum at blanda politikk til, protonir, nevtronir og elektronir. báðum Alpher og Gamow varð send nú av víðkanini eigur at hava hitan komið er til 1940, eru granskarar ikki upp í vísindini.
Recommended publications
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • A Mathematical Appendix
    381 A Mathematical Appendix A.1 Selected Formulae “Don’t worry about your difficulties in mathematics; I can assure you that mine are still greater.” Albert Einstein The solution of physics problems often involves mathemat- ics. In most cases nature is not so kind as to allow a precise mathematical treatment. Many times approximations are not only rather convenient but also necessary, because the gen- eral solution of specific problems can be very demanding and sometimes even impossible. In addition to these approximations, which often involve power series, where only the leading terms are relevant, ba- sic knowledge of calculus and statistics is required. In the following the most frequently used mathematical aids shall be briefly presented. 1. Power Series Binomial expansion: binomial expansion (1 ± x)m = m(m − 1) m(m − 1)(m − 2) 1 ± mx + x2 ± x3 +··· 2! 3! m(m − 1) ···(m − n + 1) + (±1)n xn +··· . n! For integer positive m this series is finite. The coefficients are binomial coefficients m(m − 1) ···(m − n + 1) m = . n! n If m is not a positive integer, the series is infinite and con- vergent for |x| < 1. This expansion often provides a simpli- fication of otherwise complicated expressions. 382 A Mathematical Appendix A few examples for most commonly used binomial ex- pansions: examples 1 1 1 5 (1 ± x)1/2 = 1 ± x − x2 ± x3 − x4 ±··· , for binomial expansions 2 8 16 128 − 1 3 5 35 (1 ± x) 1/2 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , 2 8 16 128 − (1 ± x) 1 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , (1 ± x)4 = 1 ± 4x + 6x2 ± 4x3 + x4 finite .
    [Show full text]
  • And Gamow Said, Let There Be a Hot Universe
    GENERAL I ARTICLE And Gamow said, Let there be a Hot Universe Somak Raychaudhury Soon after Albert Einstein published his general theory of relativity, in 1915, to describe the nature of space and time, the scientific community sought to apply it to understand the nature and origin of the Universe. One of the first people to describe the Universe using Einstein's equations was a Belgian priest called Abbe Georges Edouard Lemaitre, who had also studied math­ ematics at Cambridge with Arthur Eddington, one of the strongest exponents of relativity. Lemaitre realised Somak Raychaudhury teaches astrophysics at the that if Einstein's theory was right, the Universe could School of Physics and not be static. In fact, right now, it must be expanding. Astronomy, University of Birmingham, UK. He Working backwards, Lemaitre reasoned that the Uni­ studied at Calcutta, Oxford verse must have been a much smaller place in the past. and Cambridge, and has He knew about galaxies, having spent some time with been on the staff of the Harlow Shapley at Harvard, and knew about Edwin Harvard-Smithsonian Center for Astrophysics Hubble's pioneering measurements of the spectra of near­ and IUCAA (Pune). by galaxies, that implied that almost all galaxies are moving away from each other. This would mean that they were closer and closer together in the past. Going further back, there must have been a time when there was no space between the galaxies. Even further in the past, there would have been no space between the stars. Even earlier, the atoms that make up the stars must have been huddled together touching each other.
    [Show full text]
  • General Relativity, 9
    Utah State University DigitalCommons@USU General Relativity Notes 1-8-2018 General relativity, 9 David Peak Utah State University, [email protected] Follow this and additional works at: https://digitalcommons.usu.edu/ intermediate_modernphysics_general Part of the Physics Commons Recommended Citation Peak, David, "General relativity, 9" (2018). General Relativity. Paper 9. https://digitalcommons.usu.edu/intermediate_modernphysics_general/9 This Course is brought to you for free and open access by the Notes at DigitalCommons@USU. It has been accepted for inclusion in General Relativity by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. General relativity, 9 Cosmic development As discussed in GR 8, the cosmic scale factor a in the FLWR s-t obeys the Friedmann 2 ⎛ da ⎞ 8πG 2 k 4 3 equation a , with ρ = ρ ⎡ Ω a + Ω a + Ω ⎤ . Recent data from ⎜ ⎟ − 2 ρ = − 2 C ⎣( r ) ( m ) V ⎦ ⎝ dT ⎠ 3c r0 −5 the WMAP satellite indicates that (±2%) ΩV ≈ 0.72, Ωm ≈ 0.28, Ωr ≈ 5x10 . (See table at the end.) This implies that, if we set a = 1 (today), and k 0 . One interpretation of this is that the ρ ρC FLWR s-t is infinite in (spatial) extent. The full time-course for how a changes can be obtained by integrating the k = 0 Friedmann equation: 1/ 2 a da′ ⎛ 8πGρ ⎞ T C tH . = ⎜ 2 ⎟ = 0 ∫0 Ω Ω ⎝ 3c ⎠ a r m ′ 4 + 3 + ΩV a′ a′ It is instructive to evaluate the time between a = 0 and a = 1, i.e., the “age of the universe,” if, in turn, only radiation, only matter, and only vacuum-energy were ever present.
    [Show full text]
  • The Creation of the Universe and the Monopole String of Paul Dirac for the Magnetic Monopoles of T’Hooft-Polyakov
    The Creation of the Universe and the Monopole String of Paul Dirac for the Magnetic Monopoles of t’Hooft-Polyakov Tony Bermanseder Abstract The Dirac quantization condition and its relationship to the electromagnetic finestructure constant alpha is derived from the initial boundary conditions of the Quantum Big Bang Singularity (QBBS). The QBBS is shown to form a 2/11-dimensional mirror membrane as a 1- dimensional Dirac string relating timespace of a string-membrane epoch preceding the QBBS to the spacetime following the creation event. The Dirac monopole then transforms as a point particle into a space extended elementary particle known as the classical electron and is electro charge coupled as an electropole to the magneto charge of a magnetopole. The electron as a point particle of QFT and QED so becomes the monopolar form of the Dirac monopole as the Dirac electron, but coupled to the elementary quantum geometric templates of the scalar Higgs boson with a dark matter particle defined as a RMP or Restmass Photon. The space occupying classical electron is shown to oscillate on the fermi scale of the nuclear interactions of colour charge asymptotic gluon-quark confinement, with the ground state for the electron defining the wormhole singularity of the QBBS in spacetime as the fifth transformation of superstring classes (heterotic class 64) from the timespace era. The Dirac string so manifests as a membrane-mirror for a 4-dimensional spacetime embedded within a 5-dimensional spacetime and descriptive for a 3-dimensional surface embedded as volumar within a higher dimensional cosmology, described in the properties of a Möbian-Klein Bottle geometric connectivity for a one-sided manifold becoming two-sided in the original form of the Dirac string as a one-dimensional mathematical singularity mirroring itself in the monopolar string self-duality of a multidimensional holographic cosmology.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, George Gamow
    A Selected Bibliography of Publications by, and about, George Gamow Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 March 2021 Version 1.94 Title word cross-reference $1.95 [Smi61a]. $16.95 [Hob02]. $2.50 [Ano55a]. $2.75 [Joh54a]. $24.95 [Hob02]. $35.00 [Dys02]. $5.75 [Sit64b]. α [CG30, Gam29d, Gam30b, Gam32a, Gam33b, MP31, Rut27]. αβγ [AWCT09, Tur08]. β [Gam33e, Gam34a, GT36, Gam37b, GT37, HS19]. c [Gam39c]. G [Gam39c]. γ [BG36, Gam33e, Gam75a, MP31]. h [Gam39c]. p [Gam32a]. -and [Gam32a]. -Disintegration [Gam33e, GT36]. -Excitation [Gam33e]. -Feinstruktur [MP31]. -levels [Gam32a]. -Particles [CG30, Gam33b]. -Ray [BG36]. -Rays [Gam30b, Gam75a, Rut27]. -Spektrum [MP31]. -Transformation [GT37]. -Transformations [Gam29d]. -Zerfalls [Gam34a, Gam37b]. 0 [Dys02]. 0-521-63009-6 [Per03]. 0-521-63992-1 [Per03]. 0-7382-0532-X 1 2 [Dys02]. 1 [Gam37b, UM86a]. 19 [Ano69, Opi69].¨ 1911 [Meh75]. 1930/41 [Fer68, Fer71]. 1933 [CCJ+34, Gam37b]. 1934 [Gam34a]. 1941 [TGF41]. 1960s [Mla98]. 1968 [Huf09, Wei68]. 1982 [MR86]. 1986 [Dys87]. 1993 [Boy93]. 1994 [BCY95]. 1997 [Ano98]. 2 [Cas12a, UM86b]. 20 [Gam34a]. 2001 [Ano02]. 2005 [BL09]. 2009 [CBKZ+09]. 2010 [KLR13]. 20th [Sha07]. 22 [CCJ+34]. 4th [CBKZ+09]. 60th [MF69]. 6th [Rya06]. 70th [Ano55a]. 75th [Gam60]. 80th [MW88]. 9.80 [Uns60]. 90th [Fre94a]. 978 [Cas12a]. 978-0-670-02276-2 [Cas12a]. 9th [CBKZ+09]. ˚ar [Gam66g, Gam68e].
    [Show full text]
  • English Section
    ISSN : 0972-169X Registered with the Registrar of Newspapers of India: R.N. 70269/98 Postal Registration No. : DL-11360/2004 August 2004 Vol. 6 No. 11 Price: Rs. 5.00 VP News Inside Vigyan Rail – Science Exhibition on wheels EDITORIAL igyan Rail made its journey in the month of July 2004 to seven locations; Agra, VJaipur, Kota, Ajmer, Jodhpur, Bikaner and Firozpur. In all the places extensive press George Gamow p.34 and electronic media coverage was given by Newspapers, DDK, AIR and other private Variable Energy Cyclotron TV channels. Volunteers were trained to explain the exhibits in local language. Centre, Kolkata p.31 The Vigyan Rail exhibition at Agra was from 04 to 07 July 2004. The exhibition at Agra was inaugurated by Dr. G. C. Saxena, Vice Chancellor, Dr. B. R. Ambedkar University, Mercury—Closest... p.28 Agra. Shri M. Suresh, DRM, Agra Division, Shri Nitishwar Kumar, District Magistrate and Cholesterol: The Good, Dr. Roshan Lal, Chief Medical Officer and other dignitaries were present during the the Bad, the Ugly p.25 inauguration. In four days, some 75,000 people visited the exhibition. The next halt of Vigyan Rail was at Jaipur during 08-12 April 2004. Shri Rakesh An Encounter with Saturn p.23 Mohan Agarwal, General Manager, NW Railways inaugurated the exhibition. Shri A. K. Verma, DRM, Sh H. K. Kala, ADRM, Shri S. B. Gandhi, Sr. DGM and Chief PRO and Ms. Roli Singh, Director, Department of Science and Technology, Rajasthan were present Francis Crick: A Tribute p.21 during the inauguration.There was huge crowd of school children from the second day Recent Devlopments in of the exhibition.
    [Show full text]
  • How We Know That the Universe Went Through a Hot, Dense Phase
    THE UNIVERSE AT LARGE by VIRGINIA TRIMBLE And How We Know That. Part III COBE How We Know that the Universe & Went through a Hot, Dense Phase It was a dark and stormy night at the center of the Universe. But this need not concern us, as our story does not take place at the center of the Universe. In fact, the Universe hasn’t really got a center, and coming to terms with this is an important part of what is and is not HE CURRENT “STANDARD MODEL” of meant by cosmology, or hot big bang, is naive and rather Big Bang. proud of it. We find that general relativity is a Tgood description of all the deviations from Newtonian behavior that we see? OK, then the correct (non-quantum) theory of gravity is GR or something very much like it. The observations of wavelength shifts in the spectra of distant galaxies suggest homogeneous, isotropic expansion? BEAM LINE 25 Fine, then the universe is expanding, cooling, and be- Carl Wilhelm Wirtz coming more tenuous. The rate of that expansion, the (1876–1939), one of several oldest stars we see, and radioactive elements all suggest astronomers who preceded time scales of 10–20 billion years? Great! Then we know Hubble in attempting to correlate redshifts of spiral an approximate age for the expanding universe. Running nebulae with their apparent the expansion backwards implies a past hot, dense state brightnesses or angular in which an isotropic sea of electromagnetic radiation diameters (both, in would naturally be produced and about a quarter of the principle, distance matter turned into helium? Even better.
    [Show full text]
  • Nonequilibrium Processes in the Early Universe and Their Cosmological Effects and Constraints
    Nonequilibrium Processes in the Early Universe and Their Cosmological Effects and Constraints Daniela Petrova Kirilova A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Physical Sciences in The Institute of Astronomy and NAO Bulgarian Academy of Sciences 2015 ⃝c Daniela Petrova Kirilova 2015 All Rights Reserved To Mihail, Rosanna, Vassillen and Emanuil v ACKNOWLEDGEMENTS I am grateful to Alexander D. Dolgov for the scientific supervision, advice and care. I am thankful to Yakov B. Zeljdovich, and Matey D. Mateev for supporting my desire to work in Cosmology and Astroparticle Physics in the beginning of my studies. I am obliged to my coauthors: A. D. Dolgov, M. V. Chizhov, J.-M. Frere for the honor and the pleasure to work together. I appreciate the fruitful discussions with A. Smirnov, D. Sciama, I. Tkachev, V. Kadyshevsky, A. Starobinsky, V. Semikoz, I. Novikov,M. Shaposhnikov, M. Sazhin, G. Senjanovic, M. Tytgat, J. Lesgourgues, A. Zakharov, O. Atanckovic-Vukmanovic, R. Daemi, V. Genchev, R. Tsenov, L. Litov, E. Christova, D. Mladenov, S. Petcov, P. Krastev, D. Sasselov. I thank my Ph.D. student M. Panayotova and my M.S. students T. Velchev and T. Valchanov for the dedication and the diligence. I thank my colleagues from IA NAO BAS and from Sofia University and my friends for the interest in my research. I am glad that many of the students of my Cosmology and Astrophysics courses at the Physical Department of the Sofia University and at the American University in Bulgaria, Blagoevgrad, shared my fascination with the Universe's secrets and enthusiasm to discover and learn.
    [Show full text]
  • Founders of Modern Astronomy
    Founders of Modern Astronomy 1 Founders of Modern Astronomy From Hipparchus to Hawking Subodh Mahanti Vigyan Prasar 2 Contents Foreword Acknowledgements Preface Introduction 1. Hipparchus of Rhodes (ca 190-ca 120 B.C): The Greatest Astronomer of the Antiquity 2. Claudius Ptolemy (ca A.D. 90-168): “The Last of the Great Classical Astronomers” 3. Aryabhata (ca A.D. 476): The Greatest Astronomer of Ancient India 3. Nicolaus Copernicus (1473-1543): Founder of Heliocentric Model of the Solar System 4. Tycho Brahe (1546-1601): The Greatest Observational Astronomer of Pre -telescopic Era 5. Giordano Bruno (1548-1600): The Defiant Scientist 6. Galileo Galilei (1564-1642): Father of Modern Astronomy 7. Johannes Kepler (1571-1630): Founder of Celestial Mechanics 8. Christiaan Huygens (1629-1895): Founder of the Wave Theory of Light 9. Isaac Newton (1642-1727): Founder of Gravitational Theory 10. Edmond Halley (1656-1742): Founder of Modern Cometary Science 11. Frederick William Herschel (1738-1822): Founder of Stellar Astronomy 12. Samanta Chandra Sekhar (1835-1904): India’s Last Noted Siddhantic Astronomer 14. Albert Einstein (1879-1955): Founder of Theory of Relativity 15. Arthur Stanley Eddington (1882-1944): Who Pioneered the Study of Internal Structure of Stars 16. Edwin Powell Hubble (1889-1953); Founder of the Science of Cosmology 17. Meghnad Saha (1894-1956): Pioneer of Astrophysics 18. George Gamow (1904-1968): Scientist and Science Populariser 19. Hans Albrecht Bethe (1906-): Founder of Theory of Energy Production in Stars 20. Subrahmanyan Chandrasekhar (1910-1995: one of the Gretest Astrophysicist of the 20 th Century) 21. Fred Hoyle (1915-): The Most Versatile Astrophysicist of the 20 th Century 22.
    [Show full text]
  • Modern-Astronomy-Expanding-The
    Milestones in Discovery and Invention MODERN ASTRONOMY EXPANDING THE UNIVERSEq Lisa Yount FOR HARRY who always follows his stars and has given me a universe of love MODERN ASTRONOMY: Expanding the Universe Copyright © 2006 by Lisa Yount All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Yount, Lisa. Modern astronomy: expanding the universe / Lisa Yount. p. cm.— (Milestone in discovery and invention) Includes bibliographical references and index. ISBN 0-8160-5746-X (acid-free paper) 1. Astronomy—History—Popular works. 2. Astronomers—History—Popular works. 3. Astronomy—Technological innovations—History—Popular works. 4. Astronomical instruments—History—Popular works. I. Title. II. Series. QB28.Y68 2006 520'.9—dc22 2005025113 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text design by James Scotto-Lavino Cover design by Dorothy M. Preston Illustrations by Sholto Ainslie Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper.
    [Show full text]
  • The History and Philosophy of Astronomy
    Astronomy 350L (Spring 2005) The History and Philosophy of Astronomy (Lecture 25: Steady State vs Big Bang) Instructor: Volker Bromm TA: Amanda Bauer The University of Texas at Austin Steady State vs Big Bang Universe Permanence vs change! Parmenides Heraclitus • change is illusion! • everything is in perpetual flux! • time has no beginning • basic element: fire • “What is, cannot not be!” • “Panta Rhei!” Origin of the Big Bang Theory • 1922: an expanding universe (solving Einstein’s equations of General Relativity without cosmological constant) Alexander Friedmann (1888-1925) Origin of the Big Bang Model • 1927: Lemaitre independently (re-) discovers the expanding-universe solutions of GR Abbe Georges Lemaitre Lemaitre meets Einstein (1894-1966) (Pasadena, 1933) Origin of the Big Bang Model • Lemaitre: Imagine that you run expansion of universe backwards in time! observer Cosmic time • in distant past: universe was much denser and hotter! Origin of the Big Bang Model • 1931: Lemaitre’s “Primeval Atom”: • Primeval atom: super-heavy, radioactive! • Radioactive decay somehow triggers expansion! Lemaitre: “Father of the Big Bang” Origin of the Big Bang Model • George Gamow 1904 (Odessa) – 1968 (Boulder) • distinguished career in nuclear physics (“tunnel effect”) • 1948: theory of Big Bang nucleosynthesis (with R. Alpher) • famous popularizer of science (“Mr. Tompkins in Wonderland”) The Riddle of the Chemical Elements Abundance vs atomic number • Hydrogen and helium by far the most abundant cosmic elements • Why: 1 He atom per 10 H atoms?
    [Show full text]