How We Know That the Universe Went Through a Hot, Dense Phase
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cities and Their Vital Systems: Infrastructure Past, Present, and Future
Cities and Their Vital Systems: Infrastructure Past, Present, and Future i Series on Technology and Social Priorities NATIONAL ACADEMY OF ENGINEERING CitiesCitiesCities andandand TheirTheirTheir VitalVitalVital SystemsSystemsSystems Infrastructure Past, Present, and Future Jesse H. Ausubel and Robert Herman Editors NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyright National Academy of Sciences. All rights reserved. Cities and Their Vital Systems: Infrastructure Past, Present, and Future ii National Academy Press 2101 Constitution Avenue, NW Washington, DC 20418 NOTICE: The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sci- ences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievement of engineers. Dr. Robert M. White is president of the National Academy of Engineering. Funds for the National Academy of Engineering's Symposium Series on Technology and Social Priorities were provided by the Andrew W. Mellon Foundation, Carnegie Corporation of New York, and the Academy's Technology Agenda Program. This publication has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee. The views expressed in this volume are those of the authors and are not presented as the views of the Mellon Foundation, Carnegie Corporation, or the National Academy of Engineering. Library of Congress Cataloging-in-Publication Data Cities and their vital systems. -
Is the Universe Really Expanding?
Is the Universe really expanding? J.G. Hartnett School of Physics, the University of Western Australia 35 Stirling Hwy, Crawley 6009 WA Australia; [email protected] (Dated: November 22, 2011) The Hubble law, determined from the distance modulii and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. This claim is reviewed in light of the claimed lack of necessary evidence for time dilation in quasar and gamma-ray burst luminosity variations and other lines of evidence. It is concluded that the observations could be used to describe either a static universe (where the Hubble law results from some as-yet-unknown mechanism) or an expanding universe described by the standard Λ cold dark matter model. In the latter case, size evolution of galaxies is necessary for agreement with observations. Yet the simple non-expanding Euclidean universe fits most data with the least number of assumptions. From this review it is apparent that there are still many unanswered questions in cosmology and the title question of this paper is still far from being answered. Keywords: expanding universe, static universe, time dilation I. INTRODUCTION eral relativity, which has been successfully empirically tested in the solar system by numerous tests [74], and with pulsar/neutron star and pulsar/pulsar binary pairs Ever since the late 1920’s, when Edwin Hubble discov- [16, 45, 62] in the Galaxy, is a very strong point in its fa- ered a simple proportionality [40] between the redshifts vor, and strong evidence for an expanding universe [69]. -
Einstein's Role in the Creation of Relativistic Cosmology
EINSTEIN'S ROLE IN THE CREATION OF RELATIVISTIC COSMOLOGY CHRISTOPHER SMEENK 1. Introduction Einstein's paper, \Cosmological Considerations in the General Theory of Relativ- ity" (Einstein 1917b), is rightly regarded as the first step in modern theoretical cosmology. Perhaps the most striking novelty introduced by Einstein was the very idea of a cosmological model, an exact solution to his new gravitational field equations that gives a global description of the universe in its entirety. Einstein's paper inspired a small group of theorists to study cosmological models using his new gravitational theory, and the ideas developed during these early days have been a crucial part of cosmology ever since. We will see below that understanding the physical properties of these models and their possible connections to astro- nomical observations was the central problem facing relativistic cosmology in the 20s. By the early 30s, there was widespread consensus that a class of models de- scribing the expanding universe was in at least rough agreement with astronomical observations. But this achievement was certainly not what Einstein had in mind in introducing the first cosmological model. Einstein's seminal paper was not simply a straightforward application of his new theory to an area where one would ex- pect the greatest differences from Newtonian theory. Instead, Einstein's foray into cosmology was a final attempt to guarantee that a version of \Mach's principle" holds. The Machian idea that inertia is due only to matter shaped Einstein's work on a new theory of gravity, but he soon realized that this might not hold in his “final” theory of November 1915. -
Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe
CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2004, 21, 97–109 Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe Tamara M. Davis and Charles H. Lineweaver University of New South Wales, Sydney NSW 2052, Australia (e-mail: [email protected]; [email protected]) Received 2003 June 3, accepted 2003 October 10 Abstract: We use standard general relativity to illustrate and clarify several common misconceptions about the expansion of the universe. To show the abundance of these misconceptions we cite numerous misleading, or easily misinterpreted, statements in the literature. In the context of the new standard CDM cosmology we point out confusions regarding the particle horizon, the event horizon, the ‘observable universe’ and the Hubble sphere (distance at which recession velocity = c). We show that we can observe galaxies that have, and always have had, recession velocities greater than the speed of light. We explain why this does not violate special relativity and we link these concepts to observational tests. Attempts to restrict recession velocities to less than the speed of light require a special relativistic interpretation of cosmological redshifts. We analyze apparent magnitudes of supernovae and observationally rule out the special relativistic Doppler interpretation of cosmological redshifts at a confidence level of 23σ. Keywords: cosmology: observations — cosmology: theory 1 Introduction description of the expanding universe using spacetime The general relativistic (GR) interpretation of the redshifts diagrams and we provide a mathematical summary in of distant galaxies, as the expansion of the universe, is Appendix A. -
Finding the Radiation from the Big Bang
Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163. -
Hubble's Diagram and Cosmic Expansion
Hubble’s diagram and cosmic expansion Robert P. Kirshner* Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Contributed by Robert P. Kirshner, October 21, 2003 Edwin Hubble’s classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy’s distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble’s Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble’s distances have a large systematic error, Hubble’s velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today’s burgeoning field of cosmology. he publication of Edwin Hub- ble’s 1929 article ‘‘A relation between distance and radial T velocity among extra-galactic nebulae’’ marked a turning point in un- derstanding the universe. In this brief report, Hubble laid out the evidence for one of the great discoveries in 20th cen- tury science: the expanding universe. Hubble showed that galaxies recede from us in all directions and more dis- tant ones recede more rapidly in pro- portion to their distance. His graph of velocity against distance (Fig. 1) is the original Hubble diagram; the equation that describes the linear fit, velocity ϭ ϫ Ho distance, is Hubble’s Law; the slope of that line is the Hubble con- ͞ stant, Ho; and 1 Ho is the Hubble time. -
III EO Lawrenc
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server OBSERVATION OF COSMOLOGICAL TIME DILATION USING TYPE IA SUPERNOVAE AS CLOCKS The Supernova Cosmology Project : III G.GOLDHABER1, S. DEUSTUA, S. GABI, D. GROOM, I. HOOK, A. KIM, M. KIM, J. LEE, R. PAIN2, C. PENNYPACKER, S. PERLMUTTER AND I. SMALL E. O. Lawrence Berkeley National Laboratory & Center for Particle Astrophysics, University of California, Berkeley A. GOOBAR University of Stockholm R. ELLIS AND R. MCMAHON Institute of Astronomy, Cambridge University B. BOYLE, P. BUNCLARK, D. CARTER, K. GLAZEBROOK3 AND M. IRWIN Royal Greenwich Observatory H. NEWBERG Fermi National Accelerator Laboratory A. V. FILIPPENKO AND T. MATHESON University of California, Berkeley M. DOPITA AND J. MOULD MSSSO, Australian National University AND W. COUCH University of New South Wales . Abstract. This work is based on the first results from a systematic search for high redshift Type Ia supernovae. Using filters in the R-band we dis- covered seven such SNe, with redshift z =0:3 0:5, before or at maximum light. Type Ia SNe are known to be a homogeneous− group of SNe, to first order, with very similar light curves, spectra and peak luminosities. In this 1Presented by G. Goldhaber, e-mail address:[email protected] 2Current address: CNRS-IN2P3, University of Paris 3Current address: Anglo-Australian Observatory 2 talk we report that the light curves we observe are all broadened (time dilated) as expected from the expanding universe hypothesis. Small vari- ations from the expected 1 + z broadening of the light curve widths can be attributed to a width-brightness correlation that has been observed for nearby SNe (z<0:1). -
A Mathematical Appendix
381 A Mathematical Appendix A.1 Selected Formulae “Don’t worry about your difficulties in mathematics; I can assure you that mine are still greater.” Albert Einstein The solution of physics problems often involves mathemat- ics. In most cases nature is not so kind as to allow a precise mathematical treatment. Many times approximations are not only rather convenient but also necessary, because the gen- eral solution of specific problems can be very demanding and sometimes even impossible. In addition to these approximations, which often involve power series, where only the leading terms are relevant, ba- sic knowledge of calculus and statistics is required. In the following the most frequently used mathematical aids shall be briefly presented. 1. Power Series Binomial expansion: binomial expansion (1 ± x)m = m(m − 1) m(m − 1)(m − 2) 1 ± mx + x2 ± x3 +··· 2! 3! m(m − 1) ···(m − n + 1) + (±1)n xn +··· . n! For integer positive m this series is finite. The coefficients are binomial coefficients m(m − 1) ···(m − n + 1) m = . n! n If m is not a positive integer, the series is infinite and con- vergent for |x| < 1. This expansion often provides a simpli- fication of otherwise complicated expressions. 382 A Mathematical Appendix A few examples for most commonly used binomial ex- pansions: examples 1 1 1 5 (1 ± x)1/2 = 1 ± x − x2 ± x3 − x4 ±··· , for binomial expansions 2 8 16 128 − 1 3 5 35 (1 ± x) 1/2 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , 2 8 16 128 − (1 ± x) 1 = 1 ∓ x + x2 ∓ x3 + x4 ∓··· , (1 ± x)4 = 1 ± 4x + 6x2 ± 4x3 + x4 finite . -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Dark Energy (De) and Expanding Universe(Eu) an Augmentation -Detrition Model
International Journal of Scientific and Research Publications, Volume 2, Issue 6, June 2012 1 ISSN 2250-3153 DARK ENERGY (DE) AND EXPANDING UNIVERSE(EU) AN AUGMENTATION -DETRITION MODEL 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI ABSTRACT: A system of dark energy-expanding universe is investigated. It is shown that the time independence of the contributions portrays another system by itself and constitutes the equilibrium solution of the original time independent system. With the methodology reinforced and revitalized with the explanations, we write the governing equations with the nomenclature for the systems in the foregoing. Further papers extensively draw inferences upon such concatenation process, ipso facto,fait accompli desideratum. INDEX TERMS: Dark Energy, Expanding Universe ,Empty Space, Repulsive Force INTRODUCTION: In physical cosmology, astronomy and celestial mechanics, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe. Dark energy is the most accepted hypothesis to explain observations since the 1990s that indicate that the universe is expanding at an accelerating rate. In the standard model of cosmology, dark energy currently accounts for 73% of the total mass-energy of the universe. At the UK-Germany National Astronomy Meeting NAM2012, the Baryon Oscillation Spectroscopic Survey (BOSS) team has just announced the most accurate measurement yet of the distribution of galaxies between five and six billion years ago. This was the key 'pivot' moment at which the expansion of the universe stopped slowing down due to gravity and started to accelerate instead, due to a mysterious force dubbed "dark energy." The nature of this "dark energy" is one of the big mysteries in cosmology today, and scientists need precise measurements of the expansion history of the universe to unravel this mystery -- BOSS provides this kind of data. -
Observational Evidence Favors a Static Universe
1 Observational evidence favors a static universe David F. Crawford Sydney Institute for Astronomy, School of Physics, University of Sydney. Correspondence: 44 Market St, Naremburn, 2065, NSW, Australia email: [email protected] Abstract The common attribute of all Big Bang cosmologies is that they are based on the assumption that the universe is expanding. However exam- ination of the evidence for this expansion clearly favors a static universe. The major topics considered are: Tolman surface brightness, angular size, type 1a supernovae, gamma ray bursts, galaxy distributions, quasar dis- tributions, X-ray background radiation, cosmic microwave background ra- diation, radio source counts, quasar variability and the Butcher{Oemler effect. An analysis of the best raw data for these topics shows that they are consistent with expansion only if there is evolution that cancels the effects of expansion. An alternate cosmology, curvature cosmology, is a tired-light cosmology that predicts a well defined static and stable uni- verse and is fully described. It not only predicts accurate values for the Hubble constant and the temperature of cosmic microwave background radiation but shows good agreement with most of the topics considered. Curvature cosmology also predicts the deficiency in solar neutrino pro- duction rate and can explain the anomalous acceleration of Pioneer 10. Note: The editor of the Journal of Cosmology required this paper to be divided into three parts. Except for the abstracts, introductions and conclusions the text of the -
A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1950–1999)
A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1950{1999) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 25 August 2019 Version 1.00 Title word cross-reference 14 [Kam94]. 10 [TNN71]. 13 [Kai70, Shi70]. 1398 [Kam71]. 1772 [Rau73]. 1777 [Sio51]. 1786 [CR52]. 1790s [Dur87]. 1875 [Ros75]. 1916 [Bro85]. 1920s [GS86]. 1930s [GS86]. 1940s [Bir93a]. 1956 [Kro57, Sel56]. 1959 [Ano60m]. 1980s [Gar80]. 1988 [Hea88]. 1991 [Gom95]. 1993 [McK94]. 2000-Year-Old [Nor73]. 25 [Hea88, McK94]. 27 [Kam71]. 2nd [vH93]. 3.7.12-14 [Dum63b]. 3.7.7-10 [Dum63b]. 406 [Mer88]. 440 [Mer84]. 1 2 546 [Gre92]. 600 [Ost95]. A. [Pel95]. A.D. [Con58]. Aaron [Woo99]. Abb´e [Bei51, Chi50, Per53, Per58]. Abdallah [RT99]. Abdication [Hor65]. Abdus [Dys99]. Abilities [Thu50]. Abode [Men69a]. Abolitionist [Sch71]. Aboriginal [HK77]. Abroad [Wri56]. Abrogation [Ega71]. ABSCAM [Gri82]. Absentee [Mor74a]. Abstract [dT58b]. Academic [Car57a, Gid50, Ing57, Tay57]. Academies [Adr56, Fr¨a99]. Academy [Dup57, DM65, Rai92, Pen50]. Acadia [Olm60]. Acceleration [Dic81]. Accelerators [Sim87]. Acceptance [Lew56b]. Accessibility [Ano50a, Ano50b, Ano50c, Ano50d, Ano50e, Ano50f, Ano51a, Ano51b, Ano51c, Ano51d, Ano51e, Ano51f, Ano52a, Ano52b, Ano52c, Ano52d, Ano52e, Ano52f, Ano53a, Ano53b, Ano53c, Ano53d, Ano53e,