Founders of Modern Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Founders of Modern Astronomy Founders of Modern Astronomy 1 Founders of Modern Astronomy From Hipparchus to Hawking Subodh Mahanti Vigyan Prasar 2 Contents Foreword Acknowledgements Preface Introduction 1. Hipparchus of Rhodes (ca 190-ca 120 B.C): The Greatest Astronomer of the Antiquity 2. Claudius Ptolemy (ca A.D. 90-168): “The Last of the Great Classical Astronomers” 3. Aryabhata (ca A.D. 476): The Greatest Astronomer of Ancient India 3. Nicolaus Copernicus (1473-1543): Founder of Heliocentric Model of the Solar System 4. Tycho Brahe (1546-1601): The Greatest Observational Astronomer of Pre -telescopic Era 5. Giordano Bruno (1548-1600): The Defiant Scientist 6. Galileo Galilei (1564-1642): Father of Modern Astronomy 7. Johannes Kepler (1571-1630): Founder of Celestial Mechanics 8. Christiaan Huygens (1629-1895): Founder of the Wave Theory of Light 9. Isaac Newton (1642-1727): Founder of Gravitational Theory 10. Edmond Halley (1656-1742): Founder of Modern Cometary Science 11. Frederick William Herschel (1738-1822): Founder of Stellar Astronomy 12. Samanta Chandra Sekhar (1835-1904): India’s Last Noted Siddhantic Astronomer 14. Albert Einstein (1879-1955): Founder of Theory of Relativity 15. Arthur Stanley Eddington (1882-1944): Who Pioneered the Study of Internal Structure of Stars 16. Edwin Powell Hubble (1889-1953); Founder of the Science of Cosmology 17. Meghnad Saha (1894-1956): Pioneer of Astrophysics 18. George Gamow (1904-1968): Scientist and Science Populariser 19. Hans Albrecht Bethe (1906-): Founder of Theory of Energy Production in Stars 20. Subrahmanyan Chandrasekhar (1910-1995: one of the Gretest Astrophysicist of the 20 th Century) 21. Fred Hoyle (1915-): The Most Versatile Astrophysicist of the 20 th Century 22. Martin Ryle (1918-1984): A Pioneer of Radio Astronomy 23.Antony Hewish (1924- ): Discoverer of Pulsars 24. Vainu Bappu (1927- ): The Doyen of Modern Indian Astronomy 25. Arno Allan Penzias (1933-) and Robert Woodrow Wilson (1936 - ): Discoverers of the Cosmic Background Radiation 26. Stephen William Hawking (1942-): Who Predicted that Black Holes Emit Radiation Time-line of Astronomy Glossary Useful Astronomical Facts References Index 3 4 “The history of astronomy is the growth of man’s concept of his world. He always instinctively felt that the heavens above were the so urce and essence of his life in a deeper sense than the earth beneath. Light and warmth come from heaven.” A. Pannekoek in “A History of Astronomy”, 1961 “Astronomy tells us that the universe is v ast and powerful, but it also tells us that we are astonishing creatures. We humans are the parts of the universe that think. The human brain is the most complex piece of matter known, so as you explore the universe, remember that it is your human brain th at is capable of understanding the depth and beauty of the cosmos. To appreciate your role in the beautiful universe, you must learn more than just the facts of astronomy. You must understand what we are and how we know.” Michael A. Seeds in “Foundations of Astronomy”, 2003 5 Preface The roots of any of the main branches of science say astronomy, chemistry, geology, mathematics, medicine, physics and zoology can be traced to the antiquity. Undoubtedly astronomy is the oldest discipline of science. It has taken hundreds of years to shape a scientific discipline. The shaping of a scientific discipline is not the work of one or a few scientists. Thousands of scientists worked tirele ssly for hundreds of years before a particular discipline of science emerged. The early scientists contributed to these fields when the very methodology of modern science called `method of science’ was yet to be even formulated. There was a time when there were no distinct scientific disciplines and a truly learned person knew all the sciences whatever there were to be known. For example, the great Greek philosopher Aristotle, who is generally credited with the demarcation of different scientific disciplines, worked in physics, chemistry, astronomy, biology, geology and so on. Gradually distinct disciplines of science emerged and the scope and content of each discipline expanded enormously. It is also true that in every branch of science the achievements of some scientists stand apart. There are founders, those whose works led to the foundation of a particular discipline. There are scientists whose works brought new insights into a particular field and opened new vistas. Sometimes an individual’s work brought about what Thomas Kuhn called paradigm shift. We find such examples in astronomy as well. The progress of science has been uneven in the sense that there are periods when it has progressed at a very high pace and there are periods when there was hardly any progress or it progressed slowly. This is true for every discipline of science. The different branches of science are not mutually exclusive. The research findings in one discipline may benefit another discipline. In fact the revolution in astronomy ushered in by Nicolaus Copernicus gave a stimulus to all branches of science and thus emerged the modern science. There are scientists who have made significant contributions to more than one field. Isaac Newton’s contributions to physics are unrivalled but then he also made very significant contributions to mathematics and astronomy. There will be many such examples. As stated above astronomy is one of the oldest sciences. Its origins go back to prehistoric times. It originated much earlier than the ot her branches of science. It had become a highly developed science of its own when systematic study of other branches like physics and chemistry had not yet began. 6 The year 2009 has been declared as the International Year of Astronomy. Vigyan Prasar has planned a number of activities around the year to utilize this unique opportunity for creating an interest in science particularly in astronomy. This book is part of the series of publication brought out by Vigyan Prasar on this occasion. There is no doubt that there cannot be a better occasion than the International Year of Astronomy to remember those who laid its foundation, whose works contributed significantly to its growth or those who pioneered its study in a particular region or country. In fact thi s is also one of the objectives of the International Year of Astronomy. In this book we have included 27 astronomers. The selection may not be perfect. The author would not be surprised if someone argues that some of those included here should not have bee n included and similarly someone may point out the omissions that is those who have not been included. But then any book takes shape based on the understanding and limitation of the resources at the disposal of the author. So is the case here. The introduction presents some glimpses of the history of astronomy. In no way it should be treated as an account connecting all the developments that led to the emergence of modern astronomy. The history of astronomy is rather complex. This section also highlights the most prominent contributions of the astronomers included in the book. The section “Time-line of Astronomy” attempts to list the major events in astronomy. Some of the common concepts and terms in astronomy have been briefly described in the Glossary f or those who have no background in astronomy. The quotations given at the beginning of each biography highlight some salient features of the life and work of the concerned scientist. Some useful information like astronomical constants, the nearest and the brightest stars, the names of the constellations and the planets and principal satellites of the solar system have been added. A list of reference has also been added for the benefit of inquisitive readers. The length of the write-up of a particular astronomer has nothing to do with the significance and volume of his or her work. The most of the biographies are based on the biographies earlier published in “Dream -2047”, Vigyan Prasar’s monthly newsletter-cum-popular science magazine. There are some repetitions and they have been kept for the reader’s benefit. This is because normally it is expected that the book will not be read like a novel from beginning to end. It is quite possible somebody may be interested in some particular biographies. Keeping thi s fact in mind the biographies are not linked. The book is certainly not for those who are well -versed with the development of astronomy. It is meant for general readers having interest in science and students of schools and colleges. To make them famili ar some of the greatest names in the field of modern astronomy and some of whom actually laid 7 its foundation. The aim is to highlight the circumstances in which the astronomers included in this book worked, what inspired them to pursue science, what they thought about science and human society, what are their personal traits worth emulating for the young aspiring scientists and what were their major contributions. The ultimate aim of this book is to enthuse its readers to take an interest in astronomy and thus in science. It is not intended to teach astronomy. Here the author’s may be compared with a persuasive and fairly well informed tourist guide showing historical monuments to visitors. The monuments stand as testimony to intellectual, cultural and architectural heritage of a particular period of human civilisation. The guide moves from place to place and briefs the visitors about the importance of different sites. Often visitors go only for sight seeing and are not much interested for background infor mation. They simply admire and do not pursue further. But sometimes, a particular remark about certain aspect of a monument may ignite the mind of a visitor to marvel at it, to ponder over it and realise the true achievement.
Recommended publications
  • ‰M‰Mwm Cixþvi Cék² I Dîi
    gBs‡iwRƒj eBGqi 1g cÎ AwZwiÚ Ask 275 ‰m‰mwm cixÞvi cÉk² I Dîi 1. Dhaka Board-2015 English (Compulsory) 1st Paper Read the passage. Then answer the questions below. The National Memorial at Savar is a symbol of the nation's respect for the martyrs of the War of Liberation. It is built with concrete, but made of blood. It stands 150 feet tall, but every martyr it stands for stands so much taller. It is an achievement the dimension of which can be measured, but it stands for an achievement, which is immeasurable. It stands upright for the millions of martyrs who laid down their lives so that we may stand upright, in honour and dignity, amongst the nations of the world. Most prominently visible is the 150 feet tower that stands on a base measuring 130 feet wide. There are actually a series of 7 towers that rise by stages to a height of 150 feet. The foundation was laid on the first anniversary of the Victory Day. There is actually a plan to build a huge complex in several phases. The entire complex will cover an area of 126 acres. The plan of this complex includes a mosque, a library and a museum. The relics of the Liberation War will be kept in the museum. They will ever remind our countrymen and all who would come to visit museum of the valiant struggle and supreme sacrifices of a freedom loving people. Here also will be a clear warning to all oppressors that the weapons of freedom need not be very big, and that oppression will always be defeated.
    [Show full text]
  • Thesis Rests with Its Author
    University of Bath PHD New vacuum solutions for quadratic metric–affine gravity Pasic, Vedad Award date: 2009 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 New Vacuum Solutions for Quadratic Metric–affine Gravity submitted by Vedad Pasiˇ c´ for the degree of Doctor of Philosophy of the University of Bath Department of Mathematical Sciences February 2009 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Demystifying Special Relativity; the K-Factor Angel Darlene Harb
    Demystifying Special Relativity; the K-Factor Angel Darlene Harb University of Texas at San Antonio, TX, U.S.A. ABSTRACT This paper targets upper-level high school students and incoming college freshmen who have been less exposed to Special Relativity (SR). The goal is to spark interest and eliminate any feelings of intimidation one might have about a topic brought forth by world genius Albert Einstein. For this purpose, we will introduce some ideas revolving around SR. Additionally, by deriving the relationship between the k-factor and relative velocity, we hope that students come to an appreciation for the impact of basic mathematical skills and the way these can be applied to quite complex models. Advanced readers can directly jump ahead to the section discussing the k-factor. keywords : relative velocity, world lines, space-time 1 Introduction 1.1 A Morsel of History Throughout time, scientists have searched for ’just the right’ model comprised of laws, assumptions and theories that could explain our physical world. One example of a leading physical law is: All matter in the universe is subject to the same forces. It is important to note, this principle is agreeable to scientists, not because it is empirically true, but because this law makes for a good model of nature. Consequently, this law unifies areas like mechanics, electricity and optics traditionally taught separate from each other. Sir Isaac Newton (1643-1727) contributed to this principle with his ’three laws of motion.’ They were so mathematically elegant, that the Newtonian model dominated the scientific mind for nearly two centuries.
    [Show full text]
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on Lectures by Bernhard Brandl Lecture 8: Radio 1
    Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl Lecture 8: Radio 1. Introducon 2. Radio Emission 3. Observing 4. Antenna Technology 5. Receiver Technology 6. Back Ends 7. Calibraons (c) National Radio Astronomy Observatory / Associated Universities, Inc. / National Science Foundation The First Radio Astronomers http://en.wikipedia.org/wiki/Radio_telescope http://en.wikipedia.org/wiki/Radio_astronomy Grote Reber (1911-2002) Karl Guthe Jansky (1905-1950) Karl Jansky built (at Bell Telephone Laboratories) antenna to receive radio waves at 20.5 MHz (λ~14.6m) à “turntable” of 30m×6m à first detection of astronomical radio waves (à 1 Jy = 10−26 W m−2 Hz−1) Grote Reber extended Jansky's work, conducted first radio sky survey. For nearly a decade he was the world's only radio astronomer. Radio Astronomy Discoveries • radio (synchrotron) emission of the Milky Way (1933) • first discrete cosmic radio sources: supernova remnants and radio galaxies (1948) • 21-cm line of atomic hydrogen (1951) • Quasi Stellar Objects (1963) • Cosmic Microwave Background (1965) • Interstellar molecules ó Star formation (1968) • Pulsars (1968) Radio Observations through the Atmosphere • Radio window from ~10 MHz (30m) to 1 THz (0.3mm) • Low-frequency limit given by (reflecting) ionosphere • High frequency limit given by molecular transitions of atmospheric H2O and N2. Radio Wavelengths: PhotonsàElectric Fields • Directly measure electric fields of electro- magnetic waves • Electric fields excite currents in antennae • Currents can be amplified and split electrically. Radio Emission Mechanisms Most important astronomical radio emission mechanisms 1. Synchrotron emission 2. Free-free emission (thermal Bremsstrahlung) 3. Thermal (blackbody) emission (also from dust grains) 4.
    [Show full text]
  • Throughout the Universe, Galaxies Are Rushing Away from Us – and from Each Other – at Tremendously High Speeds
    Our Universe Began with a Bang Throughout the Universe, galaxies are rushing away from us – and from each other – at tremendously high speeds. This fact tells us that the Universe is expanding over time. Edwin Hubble (after whom the Hubble Space Telescope was named) first measured the expansion in 1929. Observatories of the Carnegie Institution of Washington Edwin Hubble This posed a big question. If we could run the cosmic movie backward in time, would everything in the Universe be crammed together in a blazing fireball – the starting point of Edwin Hubble & Proceedings of The National Academy of Sciences Hubble’s famous diagram showing the the Big Bang? A lot of scientific distance versus velocity of the galaxies he debate and many new theories observed. The farther away the galaxies, the faster they are moving, showing that the followed Hubble’s discovery. Universe is expanding. Among those in the front lines of the debate were physicists Ralph Alpher and Robert Herman. In 1948 they predicted that an afterglow of this fireball should still exist, though at a much lower temperature than at the time of the Big Bang. Here’s why: As the Universe Fun Fact: expands, the waves of heat About radiation from the Big Bang are 1% of the stretched out, and cool from “snow” you see visible energy to infrared and on broadcast TV then to microwave wavelengths. is caused by the Microwaves are just short- cosmic microwave wavelength radio waves, the same background. form of energy used in microwave ovens. The prediction of an afterglow could be tested! Scientists began building instruments to detect this “cosmic microwave background”, or CMB.
    [Show full text]
  • Q&A with Lauren Gunderson
    Q&A with Lauren Gunderson Interviewed by Joelle Seligson The United States’ most produced living playwright brings stories of science into the spotlight. Lauren Gunderson (laurengunderson.com) first married science and the stage in Background, a production that journeys back through the life of a cosmologist and through time itself. She’s now adding science, technology, engineering, and math (STEM)–oriented children’s books to her repertoire, entrancing young readers with imaginative tales tied to the scientific process. Gunderson chatted with Dimensions about why she’s driven to make audiences care about science and those who have advanced it. Lauren, which came first for you, theater or science? Theater was my first love, the first real sense of drive that I felt as a kid. Part of it was just the excitement of being on stage and telling stories. And also for me, the idea of writing, that was another big moment for me, realizing that you didn’t just say the words, you could write them. But I found out really quickly when you’re a writer and a performer, you get to ask yourself, OK—what I realized really quickly was, I mean obviously you need a subject. To be a playwright is a great thrill, but what are you going to write about? And I had a few wonderful science teachers, a biology teacher and a physics teacher, who used history and the scientists themselves to help teach us the core courses and the core themes and everything. And to me that was a big moment of oh, these are characters, and that science came from not just a mind but from a person, a personality, a time, an era.
    [Show full text]
  • Towards a Theory of Gravitational Radiation Or What Is a Gravitational Wave?
    Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Towards a theory of gravitational radiation or What is a gravitational wave? Paweł Nurowski Center for Theoretical Physics Polish Academy of Sciences King’s College London, 28 April 2016 1/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 Plan 1 Recent LIGO announcement 2 Gravitational radiation theory: summary 3 Prehistory: 1916-1956 4 History: 1957-1962 2/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy 3/48 Recent LIGO announcement Gravitational radiation theory: summary Prehistory: 1916-1956 History: 1957-1962 LIGO detection: Its relevance the first detection of gravitational waves the first detection of a black hole; of a binary black-hole; of a merging process of black holes creating a new one; Kerr black holes exist; black holes with up to 60 Solar masses exist; the most energetic process ever observed important test of Einstein’s General Theory of Relativity new window: a birth of gravitational wave astronomy
    [Show full text]
  • Einstein, Eddington, and the Eclipse: Travel Impressions
    EINSTEIN, EDDINGTON, AND THE ECLIPSE: TRAVEL IMPRESSIONS ESSAY 195 INTRODUCTION The total solar eclipse that occurred on 29 May 1919—perhaps considered the most famous solar eclipse ever—was exceptional for a variety of scientific, political, social, and even religious reasons. At just over five minutes of totality (more precisely, 302 seconds), it was a long eclipse. Behind the sun appeared the Taurus constellation, which included the Hyades, the brightest star cluster in the ecliptic. The preparations of the British teams that observed it, and which are the subject of this essay, took place in the middle of the Great War, during a period of international instability. The observation locations selected by these specialists were in the tropics, in distant regions unknown to most astronomers, and thus required extensive preparations. These places included the city of Sobral, in the north-eastern state of Ceará in Brazil, and the equatorial island of Príncipe, then part of the Portuguese empire, and today part of the Republic of São Tomé and Príncipe. Located in the Gulf of Guinea on the West African coast, Príncipe was then known as one of the world’s largest cocoa producers, and was under international suspicion for practicing slave labour. Additionally, among the teams of expeditionary astronomers from various countries—including the United Kingdom, the United States, and Brazil—there was not just one, but two British teams. This was an uncommon choice given the material, as well as the scientific and financial effort involved, accentuated by the unfavourable context of the war. The expedition that observed at Príncipe included Arthur Stanley Eddington (1882– 1944), the astrophysicist and young director of the Cambridge Observatory, as well as the clockmaker and calculator Edwin Turner Cottingham (1869–1940); the expedition that visited Brazil included Andrew Claude de la Cherois Crommelin (1865–1939), and Charles Rundle Davidson (1875–1970), both experienced astronomers at the Greenwich Observatory (see pp.
    [Show full text]
  • Is the Universe Ringing Like a Crystal Glass? by Tara Burcham, University of Southern Mississippi
    Home / Astronomy & Space / Astronomy JUNE 26, 2015 Is the universe ringing like a crystal glass? by Tara Burcham, University of Southern Mississippi The standard view of the expanding universe. Many know the phrase "the big bang theory." There's even a top television comedy series with that as its title. According to scientists, the universe began with the "big bang" and expanded to the size it is today. Yet, the gravity of all of this matter, stars, gas, galaxies, and mysterious dark matter, tries to pull the universe back together, slowing down the expansion. Now, two physicists at The University of Southern Mississippi, Lawrence Mead and Harry Ringermacher, have discovered that the universe might not only be expanding, but also oscillating or "ringing" at the same time. Their paper on the topic has been published in the April 2015 issue of the Astronomical Journal. In 1978 Arno Allan Penzias and Robert Woodrow Wilson received the Nobel prize for their 1964 discovery of the key signature of this theory, the primal radiation from the early universe known as the "cosmic microwave background" (CMB). "Then in 1998 the finding that the universe was not only expanding, but was speeding up, or accelerating in its expansion was a shock when it was discovered simultaneously by east coast and west coast teams of astronomers and physicists," said Mead. "A new form of matter, dark energy, repulsive in nature, was responsible for the speed-up. The teams led by Saul Perlmutter, Adam Riess, and Brian Schmidt won the 2011 Nobel Prize in Physics for that discovery." According to Mead and Ringermacher, this change from slowing down to speeding up (the transition time) took place approximately 6 to 7 billion years ago.
    [Show full text]