The Dinosaur Quarry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mesozoic—Dinos!
MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr. -
A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Recent Advances in Studies on Mesozoic and Paleogene Mammals in China
Vol.24 No.2 2010 Paleomammalogy Recent Advances in Studies on Mesozoic and Paleogene Mammals in China WANG Yuanqing* and NI Xijun Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 10004, China ike in other fields of paleontology, research in from the articular of the lower jaw and the quadrate of the paleomammalogy mainly falls into two aspects. cranium following the process of reduction and detachment LOne is related to the biological nature of fossil from the reptilian mandible, are new elements of the bony mammals, such as their systematics, origin, evolution, chain in the mammalian middle ear. The appearance of phylogenetic relationships, transformation of key features mammalian middle ear allows mammals to hear the sound and paleobiogeography, and the other is related to the of higher frequencies than reptiles do. Generally speaking, geological context, involving biostratigraphy, biochronology, a widely accepted hypothesis is that mammals originated faunal turnover and its relations to the global and regional from a certain extinct reptilian group. The formation and environmental changes. In the last decade, a number of development of the definitive mammalian middle ear well-preserved mammalian specimens were collected from (DMME) has thus become one of the key issues in the study different localities around the country. Such discoveries have of mammalian evolution and has drawn the attention from provided significant information for understanding the early many researchers for many years. evolution of mammals and reconstructing the phylogeny of Developmental biological studies have proven the early mammals. function of the Meckel’s cartilage and its relationship to Studies of Chinese Mesozoic mammals achieved the ear ossicles during the development of mammalian remarkable progress in the past several years. -
M a R Y L a N D
' o J x l C a JJ¿ ' u¿»... /io hC i M A R T ü R J LES Y L w : A • i v & v ' :À N sr\lài«Q3/ D FRANK J. SCHWARTZ *IES 23102 Vlaams Instituut voor dl Zu Planden Marina Instituts MARYLAND TURTLE FRANK J. SCHWARTZ, Curator C h e s a p e a k e B i o l o g i c a l L a b o r a t o r y S o l o m o n s , M a r y l a n d University of Maryland Natural Resources Institute Educational Series No. 79 J u n e 1967 FOREWORD The 1961 publication of MARYLAND TURTLES resulted in an increased awareness of these interesting members of Maryland’s vertebrate fauna. New in formation stemming from this effort has been incorporated into this revision. The researches of Dr. J. Crenshaw, Jr. on the genus Pseudemys, especially Pseudemys floridana, Florida Cooter, has resolved much of the confusion regarding this species’ true distribution and systematica in the state. Its occurrence must now be relegated to an "introduced” or "escape” category. Additional information is also on hand to confirm the Bog Turtle’s tenacious survival in swampy-bog habitats adjacent to the Susquehanna River. Recent information has helped delineate the occurrence of the Atlantic Ridley turtle in the upper Chesapeake Bay. A new section has been added which discusses fossil turtles. It is hoped this edition will maintain interest in and further expand our knowledge of the turtles of the area. -
Memorial to Carl Owen Dunbar 1891-1979 KARL M
Memorial to Carl Owen Dunbar 1891-1979 KARL M. WAAGE Peabody Museum, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 Carl Owen Dunbar died suddenly at the age of 88 on April 7, 1979, while at the home of his son, just across the street from his own home in Dunedin, Florida. He is survived by his son, Carl Owen Dunbar, Jr.; his daughter, Mrs. Lora Louise Johnson of Atlanta, Geor gia; six grandchildren, and three great-grandchildren. His wife, Lora Beamer Dunbar, whom he married at Lawrence, Kansas, in September of 1914, predeceased him in December 1978. Carl was born January 1, 1891, to David and Emma Thomas Dunbar on their wheat ranch near Hal- lowell, Cherokee County, Kansas. The Dunbars were pioneer wheat farmers in Kansas Territory and among the first in that area to use powered farm machinery. From his early youth, Carl commonly ran the machines and, as he matured, served as foreman of the hired crews. Graduating from Cherokee County High School in 1909, he entered the University of Kansas the following Sep tember. Early in his undergraduate days a visiting uncle asked whether he would study any geology. “What’s geology? I never heard of it,” replied Carl. The uncle confessed that he didn’t know much about it himself, but he had a friend who was a geologist, and he thought it was great. According to Carl, “Three days later, I was enrolled in a geology course, and the instructor was W. H. Twenhofel.” Recruitment through the inspiration and encouragement of one interested individual is a familiar pattern in our profession. -
Defining the Mesozoic
DEBRA LINDSAY THE MESOZOIC/DEFINING DISCIPLINES: LATE NINETEENTH- CENTURY DEBATES OVER THE JURASSIC–CRETACEOUS BOUNDARY DEBRA LINDSAY Department of History and Politics University of New Brunswick, Saint John, NB, Canada E2L 4L5 [email protected] ABSTRACT The last two decades of the nineteenth century were exciting times in American paleontology, with disputes over Jurassic dinosaurs between Edward Drinker Cope and Othniel Charles Marsh appearing in the press. Less well known is the dispute over defining the Mesozoic that began in 1888 when Marsh invited Lester Frank Ward, a colleague with whom he had been working on the Potomac Formation for the United States Geological Survey, to speak on the plant fossils found there. Initially agreeing with Marsh that the Potomac was a Jurassic formation, work on fossil cycads led Ward to conclude that the Potomac was Lower Cretaceous. As Ward and Marsh grappled with the question of how to determine the age and identity of Mesozoic systems, they joined other paleontologists and Earth Sciences History geologists such as William J. McGee, Albert Charles Seward, and Samuel W. Williston in 2011, Vol. 30, No. 2 a debate that often reflected scientific training and sub-specializations as much as pp. 216–239 stratigraphic principles, becoming caught up in a trans-Atlantic dispute in which their reputations were on the line as they claimed that ‘their’ fossils were key determinants of Mesozoic systems. In the end, Marsh’s reputation as a paleontologist was far better established than that of Ward, who moved on to another career as a sociologist at Brown University, but cycad discoveries from Maryland, Colorado and Wyoming, and fieldwork, trumped laboratory studies—even when performed by a master systematist—as the Potomac Formation proved to be Lower Cretaceous. -
The Dinosaurs of North America
FEOM THE SIXTEENTH ANNUAL KEPOKT OF THE U. S, GEOLOGICAL SURVEY THE DINOSAURS OF NORTH AMERICA OTHNIEL CHARLES MARSH TALE UNIVERSITY WASHINGTON 1896 ^33/^, I/BRAKt 4 ,\ . THE DINOSAURS OF NORTH AMERICA. BY OTHNIEL CHARLES MARSH. 133 CONTENTS. Pajje. Introduction 143 Part I. —Triassic dinosaurs 146 Theropoda 146 Anchisaurida? 147 Anchisaurus 147 The skull 148 The fore limbs 149 The hind limbs 149 Anchisaurus solus 149 Amniosaurus rTT 150 Eestoration of Anchisaurus 150 Dinosaurian footprints 151 Distribution of Triassic dinosaurs 152 Part II. —Jurassic dinosaurs 152 Theropoda : 153 Hallopus 153 Fore and hind limbs 154 Coelurus _ 155 The vertebra:- 155 The hind limbs 156 Ceratosaurus 156 The skull 157 The brain 159 The lower iaws 159 The vertebra: 159 The scapular arch 160 The pelvic arch 160 The metatarsals 162 Eestoration of Ceratosaurus 163 Allosaurus 163 European Theropoda 163 Sauropoda 164 Atlantosaurus beds 164 Families of Sauropoda 165 Atlantosauridie 166 Atlantosaurus 166 Apatosaurus 166 The sacral cavity 166 The vertebra- 167 Brontosaurus 168 The scapular arch 168 The cervical vertebra.- 169 The dorsal vertebree 169 The sacrum 170 The caudal vertebra- 171 The pelric arch 172 The fore limbs 173 The hind limbs 173 135 136 CONTENTS. Part II. —Jurassic dinosaurs—Continued. Page. Sauropoda—Continued. Atlantosaurida? —Continued. Restoration of Brontosaurus 173 Barnsaurus 174 Diplodoeida? 175 Diplodocus 175 The skull 175 The brain 178 The lower jaws 178 The teeth 179 The vertebra; 180 The sternal bones 180 The pelvic girdle 180 Size and habits 180 Morosaurida? 181 Morosaurus 181 The skull 181 The vertebra? 181 The fore limbs 182 The pelvis 182 The hind limbs 183 Pleuroccelida? : 183 Pleurocoelus 183 The skull 183 The vertebras 183 Distribution of the Sauropoda 185 Comparison with European forms 185 Predentata ». -
The BACKBENDER's GAZETTE the Newsletter of the Houston Gem & Mineral Society Houston, TX Volume XXXIX - No
The BACKBENDER'S GAZETTE The Newsletter of the Houston Gem & Mineral Society Houston, TX Volume XXXIX - No. 7 July 2008 President’s Message by Terrell William “Terry” Proctor 2008 HGMS President ome things seem to remain on the horizon, others are closing in, and some whizzed by so fast they Sare now gone. Do some moments in your life seem to zip past you and others seem to take forever to ar- rive? In a book I wrote I used a comparison on this. The same moment in time that you are waiting for the light to change green seems to take a long time, but for a young man on a date with his main squeeze (for you younger readers, that means main girlfriend) the whole evening can seem to be over in moments. I can recall great trips I looked forward to in antici- pation for months, and then they whizzed by me, leaving only a pleasant memory to look back on for the rest of my life. For months I looked forward to the week I would spend with famous paleontologist Robert Bakker, PhD digging a dinosaur for the first time in my life, in Como Bluff, Wyoming. (Como Bluff is a famous dig site harking back to the days of the dinosaur bone war between Edward Drinker Cope and Othniel Charles Marsh who were com- Continued on page 4 Great Schedule of Upcoming General Membership Programs by Terry Proctor une 24, 2008: Art Smith on “Upgrading Mineral Specimens” July 22, 2008: Open due to our scheduled speaker developing venous (prob- JlemJJ with leg veins) health problems, his presentation on flint point knapping will be delayed for some months while he recovers. -
Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A. -
Dinosaurs, by William Diller Matthew
The Project Gutenberg eBook of Dinosaurs, by William Diller Matthew http://www.gutenberg.org/files/19302/19302-h/19302-h.htm The[10][11][12][13][14][15][16][17][18][19][20][21][22][1][2][3][4][5][6][7][8][9] Project Gutenberg eBook, Dinosaurs, by T[100][103][104][105][106][108][109][110][111][112][113][115][117][118][119][120][121][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][161][162][10][11][12][13][14][15][17][18][19][20][21][22][23][24][26][27][28][29][30][31][34][35][36][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][61][63][64][65][66][67][68][69][70][71][72][73][74][76][77][78][79][80][81][83][84][85][86][87][88][90][91][93][94][95][96][97][98][99]OC William Diller Matthew This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Dinosaurs With Special Reference to the American Museum Collections Author: William Diller Matthew Release Date: September 16, 2006 [eBook #19302] Language: English Character set encoding: ISO-8859-1 ***START OF THE PROJECT GUTENBERG EBOOK DINOSAURS*** E-text prepared by Brian Janes, Suzanne Lybarger, Jeannie Howse, and the Project Gutenberg Online Distributed Proofreading Team http://www.pgdp.net) Transcriber's Note: Click the image to see a larger version. -
Lakamie Basin, Wyoming
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 364 GEOLOGY AND MINERAL RESOURCES OF THE LAKAMIE BASIN, WYOMING A PRELIMINARY REPORT BY N. H. DARTON AND C. E. SIEBENTHAL WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction............................................................. 7 Geography ............................................................... 8 Configuration........................................................ 8 Drainage ............................................................ 9 Climate ............................................................. 9 Temperature...................................................... 9 Precipitation..................................................... 10 Geology ................................................................. 11 Stratigraphy.......................................................... 11 General relations........................../....................... .11 Carboniferous system............................................. 13 Casper formation......................... .................... 13. General character........................................ 13 Thickness ............................................... 13 Local features............................................ 14 Erosion and weathering of limestone slopes ................ 18 Paleontology and age..................................... 19 Correlation .............................................. 20 Forelle limestone............................................