The Role of Ketoconazole in Seborrheic Dermatitis

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Ketoconazole in Seborrheic Dermatitis THERAPEUTICS FOR THE CLINICIAN The Role of Ketoconazole in Seborrheic Dermatitis Marcel Borgers, PhD; Hugo Degreef, MD Although the prominent broad-spectrum activity SD affects approximately 2% to 5% of the popu- of ketoconazole was reported in the early 1980s, lation worldwide. It is more common in adolescents its effect against Malassezia species was most and young men, but it also is seen in elderly patients, pronounced; thus, it was developed for the treat- patients with neurologic conditions (eg, parkinson- ment of various skin infections in which a link ism, syringomyelia, depression, endocrine disorders), with these fungal species was proposed. Later, a and immunocompromised patients, such as those number of ancillary properties were described for patients with AIDS.1 Dandruff may be a symptom of ketoconazole that comprised its anti-inflammatory, psoriasis or fungal infections, but in most instances, antiseborrheic, and antiproliferative profile. The it may be regarded as a mild form of SD. In some incorporation of ketoconazole in an adapted vehi- cases, the excessive flaking of dead skin, which is cle could further promote its efficacy. Recently, typical of dandruff, may be accompanied by redness a new formulation—an anhydrous gel containing and irritation, thus fulfilling the definition of SD. ketoconazole 2%—was launched in which all of Although SD has been encountered for many the ancillary properties were optimized. years, the etiology of the disorder is poorly under- Cutis. 2007;80:359-363. stood. The disease is regarded as multifactorial, but several hypotheses have been formulated in the past centuries. In the 19th century, seborrhea was eborrheic dermatitis (SD)—or seborrheic supposed to be, as the name indicates, the most eczema, as the disorder is often named in many important eliciting factor. Unna2 coined the term S European countries—is a common superficial seborrheic dermatitis in 1887 because of his hypoth- inflammatory disease that evolves with periods of esis that the disorder was an eczematous condition; flares and remission. The typical distribution and he gave little attention to the microorganisms pres- clinical aspect of SD affect areas of the skin that are ent in the lesions, which he called Flashen Bazillen rich in sebaceous glands, particularly the scalp, face, (bacilles bouteilles). In 1904, Sabouraud3 was the nasolabial folds, eyebrows and postauricular regions, first to give attention to the microorganisms, which chest, and upper back. The lesions are sharply mar- he recognized as yeasts and thus renamed them ginated, erythematous, pruritic papules covered with Pityrosporum. Sabouraud3 initiated the infectious a greasy scale. Their color is pink to salmon-red rather theory that is ongoing to date, though the name of than dark red. the yeast has been changed several times. The Infectious Hypothesis Accepted for publication February 8, 2007. Currently, yeasts of the genus Pityrosporum are classi- Dr. Borgers is from Barrier Therapeutics NV, Geel, Belgium, and the Department of Molecular Cell Biology, Maastricht University, fied as Malassezia in honor of the first description of 4 Netherlands. Dr. Degreef is from the Department of Dermatology, fungi in the scales of dandruff by Malassez in 1874. University Hospital KULeuven, Belgium. In the 1960s and 1970s, Kligman et al5 opposed the Dr. Borgers is cofounder of Barrier Therapeutics, Inc, and fungal origin of SD and proposed a hyperproliferative scientific advisor of Barrier Therapeutics NV. Dr. Degreef is cause because of the presence of an increased cell a consultant for Barrier Therapeutics, Inc. Reprints: Griet Vermeerbergen, Barrier Therapeutics NV, turnover in the epidermis. Cipalstraat 3, B-2440 Geel, Belgium After the genus Pityrosporum was proposed as the (e-mail: [email protected]). causative agent of dandruff and SD by Sabouraud3 VOLUME 80, OCTOBER 2007 359 Therapeutics for the Clinician in 1904, the evolution of its taxonomy and nomen- these yeasts evolved from M sympodialis because of clature became chaotic. In 1977, Pityrosporum ovale specific animal hosts.10 (oval form), Pityrosporum orbiculare (round form), and Malassezia furfur (mycelial form) were consid- Susceptibility of Malassezia Species ered different configurations of the same organism. to Ketoconazole In addition, Malassezia pachydermatis was identi- Ketoconazole was introduced in 1979 as the first fied as a nonlipophilic yeast in animals. In 1990, orally active imidazole compound with activity Cunningham et al6 identified 3 different serovars on against a wide spectrum of yeast, dimorphic fungi, the basis of different surface antigens. The current and polymorphic fungi.12 The drug was recognized for knowledge is derived from the 1995 work of Guillot its prominent anti-Candida, antidermatophyte, and and Guého7 and based on the differences dis- particularly anti-Malassezia properties. The promis- played after ribosomal RNA sequence and nuclear ing clinical results of oral ketoconazole in SD were DNA comparisons. discovered by coincidence.13 Because of the agent’s Six of 7 identified species are lipophilic and possible interference with hepatic functions after oral are encountered in man (Malassezia globosa, intake, the efficacy of topical ketoconazole in SD was Malassezia restricta, M furfur, Malassezia sympodialis, investigated. The preferential location of Malassezia Malassezia slooffiae, Malassezia obtusa), whereas species to the superficial skin layers caused several M pachydermatis is not lipophilic and is found mostly topical ketoconazole formulations to be successfully in animals. Sugita et al8,9 described 2 new species: introduced.14-17 It became clear that ancillary mecha- Malassezia dermatis in 2002, found in patients with nisms unrelated to the drug’s outstanding activity atopic dermatitis, and Malassezia yamatoensis in against Malassezia species play an important role in 2004, found in patients with SD. In 2005, Cabanes the relief of the SD symptoms. et al10 described Malassezia equi (tentative name), a The potency of ketoconazole to inhibit the growth lipophilic yeast mainly present in horses. Malassezia of various new Malassezia species and strains has been nana, as reported by Hirai et al11 in 2004, also is a reported in 2 publications,18,19 which mostly confirm novel lipid-dependent yeast species isolated from the initially reported comparative data with other animals. M nana, M dermatis, and M equi are geneti- azoles.20 Hammer et al18 showed the superiority of cally close to M sympodialis; it is not excluded that ketoconazole over econazole and miconazole nitrate Figure 1. Malassezia sympodialis exposed to solvent (transmission electron microscopy, original magnification 320,100)(A) and 0.1 mg/mL ketoconazole for 24 hours (transmis- sion electron microscopy, original magnification 324,000)(B). Note the induction of mummifi- cation after treatment (ie, the occurrence of cytoplasmic necrosis in the treated culture, even though the surround- ing cell wall apparently remains comparable to the solvent exposed cells). CW indicates cell A B wall; LV, lipid vesicle. 360 CUTIS® Therapeutics for the Clinician (102100 times more potent) on a large number of through production of inflammatory mediators or clinical isolates of M furfur, M sympodialis, M slooffiae, changes in lipase activity.24 Lipases or other toxic M globosa, and M obtusa. A study by Faergemann et al19 substances are known to induce complement activa- comparing ketoconazole with pramiconazole, a tri- tion via alternative pathways, which may result in azole antifungal,21 confirmed the potency of ketocon- an inflammatory response.22 However, an important azole against 7 different Malassezia species (Figure 1). argument against infectious yeast involvement in In the latter study, the obtained minimum inhibi- mediating inflammation is that seborrheic symp- tory concentration values ranged from 0.002 to toms equally can be induced by killed yeasts.25 The 0.1 mg/mL.21 In addition, the Faergemann et al19 study anti-inflammatory effect of ketoconazole has been reported the potent inhibitory effects of ketoconazole proposed in several clinical studies, including stud- on the production of hyphae in M sympodialis from ies involving SD.17,26 The effect of ketoconazole has 0.01 mg/mL onward. To our knowledge, there are no been attributed to the inhibition of 5-lipoxygenase reports in the literature of resistance to Malassezia activity bearing on the production of leukotrienes species with ketoconazole. derived from arachidonic acid.27 However, it cannot Although less pronounced than with miconazole be excluded that the resolution of inflammatory signs nitrate, bacteriostatic effects of ketoconazole against are seen subsequent to barrier restoring effects or anti- Gram-positive bacteria such as Staphylococcus aureus microbial effects.22 have been reported.12 The in vitro data were con- Antiseborrheic Profile—Sebum hypersecretion firmed in vivo after topical application of ketocon- is one of the hallmarks in most cases of SD. It azole to skin lesions induced by S aureus.22 repeatedly has been reported that both oral and In recent years, there has been a resurgence of topical ketoconazole lower the sebum content of interest in Malassezia species, not as an infective seborrheic skin.28,29 Recent investigations30 have agent but as a source of inflammatory or immuno- supported this observation and showed that cul- logic reactions. However, no unambiguous proof has tured human keratinocytes
Recommended publications
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • Therapeutic Class Overview Antifungals, Topical
    Therapeutic Class Overview Antifungals, Topical INTRODUCTION The topical antifungals are available in multiple dosage forms and are indicated for a number of fungal infections and related conditions. In general, these agents are Food and Drug Administration (FDA)-approved for the treatment of cutaneous candidiasis, onychomycosis, seborrheic dermatitis, tinea corporis, tinea cruris, tinea pedis, and tinea versicolor (Clinical Pharmacology 2018). The antifungals may be further classified into the following categories based upon their chemical structures: allylamines (naftifine, terbinafine [only available over the counter (OTC)]), azoles (clotrimazole, econazole, efinaconazole, ketoconazole, luliconazole, miconazole, oxiconazole, sertaconazole, sulconazole), benzylamines (butenafine), hydroxypyridones (ciclopirox), oxaborole (tavaborole), polyenes (nystatin), thiocarbamates (tolnaftate [no FDA-approved formulations]), and miscellaneous (undecylenic acid [no FDA-approved formulations]) (Micromedex 2018). The topical antifungals are available as single entity and/or combination products. Two combination products, nystatin/triamcinolone and Lotrisone (clotrimazole/betamethasone), contain an antifungal and a corticosteroid preparation. The corticosteroid helps to decrease inflammation and indirectly hasten healing time. The other combination product, Vusion (miconazole/zinc oxide/white petrolatum), contains an antifungal and zinc oxide. Zinc oxide acts as a skin protectant and mild astringent with weak antiseptic properties and helps to
    [Show full text]
  • Abnormal Vaginal Discharge: What Does and Does Not Work in Treating Underlying Causes
    AE_French.1104.final 10/18/04 11:03 AM Page 890 Applied Evidence N EW R ESEARCH F INDINGS T HAT A RE C HANGING C LINICAL P RACTICE Abnormal vaginal discharge: What does and does not work in treating underlying causes Linda French, MD Michigan State University, East Lansing, Mich Jennifer Horton, DO Genesys Regional Medical Center Family Practice Residency, Grand Blanc, Mich Michelle Matousek, DO Henry Ford Health System, Detroit, Mich Practice recommendations part of this article, “Abnormal vaginal discharge: Using office diagnostic testing more effectively” ■ Treat bacterial vaginosis with oral or intravagi- (JFP 2004; 53[10]:805–814), abnormal discharge nal metronidazole or with clindamycin (SOR: is more likely to be bacterial vaginosis or no A); recurrences are common (SOR: C). pathogen at all. Potential delay in diagnosis and treatment of a sexually transmitted disease is ■ Oral and intravaginal imidazoles are also a concern. Increasing resistance of Candida equally effective in the treatment of sp. to imidazoles is associated with indiscriminate candidiasis (SOR: A); alternate therapies use of over-the-counter products. for resistant cases have been little studied. ■ Oral metronidazole is the standard ■ BACTERIAL VAGINOSIS therapy for trichomoniasis (SOR: A). The standard treatment for bacterial vaginosis Oral tinidazole, newly available in the (BV) has been oral metronidazole (Flagyl) 500 mg US in 2004, should be used in resistant twice daily for 5 to 7 days. Intravaginal 0.75% cases (SOR: B). metronidazole gel (MetroGel) has been shown to be as effective as oral metronidazole (SOR: A).1,2 Oral metronidazole can cause nausea and ntifungal medications for intravaginal use abdominal pain in some patients; vaginal treat- have been available in the United States ment may be preferable for them.
    [Show full text]
  • WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT (51) International Patent Classification: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, C07K 7/60 (2006.01) G01N 33/53 (2006.01) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, CI2Q 1/18 (2006.01) MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (21) International Application Number: KM, ML, MR, NE, SN, TD, TG). PCT/US2017/063696 (22) International Filing Date: Published: 29 November 201 7 (29. 11.201 7) — with international search report (Art. 21(3)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/427,507 29 November 2016 (29. 11.2016) US 62/484,696 12 April 2017 (12.04.2017) US 62/53 1,767 12 July 2017 (12.07.2017) US 62/541,474 04 August 2017 (04.08.2017) US 62/566,947 02 October 2017 (02.10.2017) US 62/578,877 30 October 2017 (30.10.2017) US (71) Applicant: CIDARA THERAPEUTICS, INC [US/US]; 63 10 Nancy Ridge Drive, Suite 101, San Diego, CA 92121 (US). (72) Inventors: BARTIZAL, Kenneth; 7520 Draper Avenue, Unit 5, La Jolla, CA 92037 (US). DARUWALA, Paul; 1141 Luneta Drive, Del Mar, CA 92014 (US). FORREST, Kevin; 13864 Boquita Drive, Del Mar, CA 92014 (US).
    [Show full text]
  • Malassezia Baillon, Emerging Clinical Yeasts
    FEMS Yeast Research 5 (2005) 1101–1113 www.fems-microbiology.org MiniReview Malassezia Baillon, emerging clinical yeasts Roma Batra a,1, Teun Boekhout b,*, Eveline Gue´ho c, F. Javier Caban˜es d, Thomas L. Dawson Jr. e, Aditya K. Gupta a,f a Mediprobe Research, London, Ont., Canada b Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 85167 Utrecht, The Netherlands c 5 rue de la Huchette, F-61400 Mauves sur Huisne, France d Departament de Sanitat i dÕ Anatomia Animals, Universitat Auto`noma de Barcelona, Bellaterra, Barcelona E-08193, Spain e Beauty Care Technology Division, Procter & Gamble Company, Cincinnati, USA f Division of Dermatology, Department of Medicine, Sunnybrook and WomenÕs College Health Science Center (Sunnybrook site) and the University of Toronto, Toronto, Ont., Canada Received 1 November 2004; received in revised form 11 May 2005; accepted 18 May 2005 First published online 12 July 2005 Abstract The human and animal pathogenic yeast genus Malassezia has received considerable attention in recent years from dermatolo- gists, other clinicians, veterinarians and mycologists. Some points highlighted in this review include recent advances in the techno- logical developments related to detection, identification, and classification of Malassezia species. The clinical association of Malassezia species with a number of mammalian dermatological diseases including dandruff, seborrhoeic dermatitis, pityriasis ver- sicolor, psoriasis, folliculitis and otitis is also discussed. Ó 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Malassezia; Yeast; Identification; Animals; Disease 1. Introduction a positive staining reaction with Diazonium Blue B (DBB) [3]. The genus was named in 1889 by Baillon Members of the genus Malassezia are opportunistic [6] with the species M.
    [Show full text]
  • Seborrheic Dermatitis More Than Meets the Eye
    SEBORRHEIC DERMATITIS More than meets the eye Martijn Gerard Hendrik Sanders Financial support for the printing of this thesis was kindly provided by: La Roche-Posay UCB Chipsoft LEO Pharma Louis Widmer L’Oréal Lilly Merz Pharma Van der Bend B.V. Olmed ISBN: 978-94-6361-558-7 Cover illustration by Sara van der Linde Cover design, lay-out and printing by Optima Grafische Communicatie Copyright © M.G.H. Sanders, Rotterdam 2021 All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form by any means without permission from the author, or when appropriate, of the publisher of the publication. Seborrheic Dermatitis More than meets the eye Seborroïsch eczeem Niet alles is wat het lijkt Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. F.A. van der Duijn Schouten en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatvinden op donderdag 24 juni 2012 om 10:30 uur Door Martijn Gerard Hendrik Sanders geboren te Almelo PROMOTIECOMMISSIE Promotor: prof. dr. T.E.C. Nijsten Overige leden: prof. dr. E.P. Prens prof. dr. A.G. Uitterlinden prof. dr. J.L.W. Lambert Copromotor: dr. L.M. Pardo Cortes CONTENTS Chapter 1 General introduction 7 Chapter 2 Dermatological screening of a middle-aged and elderly population: 19 the Rotterdam Study Chapter 3 3.1 Prevalence and determinants of seborrheic dermatitis in a middle 29 aged and elderly population: the Rotterdam Study 3.2 Association between
    [Show full text]
  • Topical Salicylic Acid and Lactic Acid Microemulsion
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Research Article Organic & Medicinal Chem IJ Volume 2 Issue 3 - May 2017 DOI: 10.19080/OMCIJ.2017.02.555587 Copyright © All rights are reserved by Maher Aljamal Topical Salicylic acid and Lactic acid Microemulsion Maher Aljamal1,2*, Ibrahim Kayali2 and Mohammad Abul-Haj2 1BeitJala Pharmaceutical Company / Research and Development department, Palestine 2Department of Chemistry, Palestine, Al- Quds university, Israel Submission: April 26, 2017; Published: May 02, 2017 *Corresponding author: Maher Aljamal, BeitJala Pharmaceutical Company / Research and Development department, Al- Quds university, Palestine, Tel: ; Email: Abstract Microemulsionsare used to solubilizing and improve an active pharmaceutical ingredientssolubility and permeability, such as those for topical absorption availability. The objective of this study was to prepare a microemulsion liquid composed of 12% salicylic acid and 4% of lactic acid using castor oil, Tween 80, propylene glycol, ethyl alcohol and purified water. Using the low energy emulsification technique; four andpseudo transparent/translucent ternary phase diagrams microemulsion. were constructed The Resultsand studied indicate for ata leastclear, 75thermodynamic days under a titrationmicroemulsion method liquid using obtainedpurified waterin each (with of the or without propylene glycol), each phase diagram was investigated at 25°C, 37°C and 45°C. The phases include conventional emulsion, viscous using low concentration of Tween 80. It was suggested that microemulsions of 12% Salicylic acid and 4% Lactic acid could be a suitable vehicleconstructed for topical phase treatment diagrams ofat psoriasis, all temperatures scaly patches, of study. ichthyoses, Using propylene dandruff, glycol corns, as calluses, a co-surfactant, and wartson lead the to handsmore orstable feet.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Antifungal and Antibiotic Powders
    ANTIFUNGAL AND ANTIBIOTIC POWDERS Antifungals: Econazole Powder, Ketoconazole Powder, Nyamyc (nystatin) Powder, Nystop (nystatin) Powder Antibiotics: Mupirocin Powder, Tobramycin Powder, Vancomycin Powder RATIONALE FOR INCLUSION IN PA PROGRAM Background Pharmacy compounding is an ancient practice in which pharmacists combine, mix or alter ingredients to create unique medications that meet specific needs of individual patients. Some examples of the need for compounding products would be: the dosage formulation must be changed to allow a person with dysphagia (trouble swallowing) to have a liquid formulation of a commercially available tablet only product, or to obtain the exact strength needed of the active ingredient, to avoid ingredients that a particular patient has an allergy to, or simply to add flavoring to medication to make it more palatable. The intent of the criteria is to provide coverage consistent with product labeling, FDA guidance, standards of medical practice, evidence-based drug information, and/or published guidelines. Pharmacy powder products have the potential for misuse. Misuse of these powder products is quite common and it is important to inform patients about the possible complications due to overuse of these drugs. Regulatory Status FDA approved indication: Antifungal agents kill fungi or inhibit their growth. Antifungals that kill fungi are called fungicidal while those that inhibit their growth are called fungistatic. Antibiotics, or antimicrobials, are medications that destroy or slow down the growth of bacteria.
    [Show full text]
  • Current Options in Antifungal Pharmacotherapy
    Current Options in Antifungal Pharmacotherapy John Mohr, Pharm.D., Melissa Johnson, Pharm.D., Travis Cooper, Pharm.D., James S. Lewis, II, Pharm.D., and Luis Ostrosky-Zeichner, M.D. Infections caused by yeasts and molds continue to be associated with high rates of morbidity and mortality in both immunocompromised and immuno- competent patients. Many antifungal drugs have been developed over the past 15 years to aid in the management of these infections. However, treatment is still not optimal, as the epidemiology of the fungal infections continues to change and the available antifungal agents have varying toxicities and drug- interaction potential. Several investigational antifungal drugs, as well as nonantifungal drugs, show promise for the management of these infections. Key Words: antifungal drugs, invasive fungal infection, amphotericin B, polyenes, invasive aspergillosis, liposomal amphotericin B, L-AmB. (Pharmacotherapy 2008;28(5):614–645) OUTLINE Icofungipen Polyenes Conclusion Mechanism of Action Invasive fungal infections continue to be asso- Clinical Efficacy ciated with high rates of morbidity and mortality Safety in both immunocompromised and immuno- Azoles competent hosts. Amphotericin B deoxycholate Mechanism of Action (AmBd) has been the cornerstone for treatment Clinical Efficacy of invasive fungal infections since the early Safety 1950s. However, new agents have emerged to Echinocandins manage these infections over the past 15 years Mechanism of Action (Figure 1). Although Candida species remain the Clinical Efficacy most common pathogens associated with fungal Safety disease, infections caused by Aspergillus and Investigational Antifungal Drugs and Other Cryptococcus sp, Zygomycetes, and the endemic Nonantifungal Agents fungi (Histoplasma, Blastomyces, and Coccidioides Monoclonal Antibody Against Heat Shock Protein 90 sp) also account for many fungal infections.
    [Show full text]
  • Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S Rdna PCR-RFLP Analysis
    Ann Dermatol Vol. 23, No. 2, 2011 DOI: 10.5021/ad.2011.23.2.177 ORIGINAL ARTICLE Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis Jong Hyun Ko, M.D., Yang Won Lee, M.D., Yong Beom Choe, M.D., Kyu Joong Ahn, M.D. Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea Background: So far, studies on the inter-relationship -Keywords- between Malassezia and Malassezia folliculitis have been 26S rDNA PCR-RFLP, Malassezia folliculitis, Malassezia rather scarce. Objective: We sought to analyze the yeasts differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. INTRODUCTION Methods: Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from Malassezia folliculitis, as with seborrheic dermatitis, the normal skin of 60 age- and gender-matched healthy affects sites where there is an enhanced activity of controls by 26S rDNA PCR-RFLP. Results: M. restricta was sebaceous glands such as the face, upper trunk and dominant in the patients with Malassezia folliculitis (20.6%), shoulders. These patients often present with mild pruritus while M. globosa was the most common species (26.7%) in or follicular rash and pustules without itching1,2. It usually the controls. The rate of identification was the highest in the occurs in the setting of immuno-suppression such as the teens for the patient group, whereas it was the highest in the use of steroids or other immunosuppressants, chemo- thirties for the control group.
    [Show full text]
  • Laboratory Analysis Showed That Econazole and Miconazole
    laboratory analysis showed that econazole and Moorfields Eye Hospital miconazole had identical minimal inhibitory City Road London EC 1V 2PD, UK concentrations (0.25 mg/ml), and as econazole is less [email protected] toxic to corneal epithelium when used long-term,13 it was our agent of choice. If possible, pharmacological treatment should be Sir, combined with debridement and removal of necrotic tissue as this speeds recovery and improves final Conservative management of double penetrating ocular outcome.3 Antifungal treatment needs to be continued in injuries the long term after the infection has clinically resolved as Penetrating eye injuries can result in severe visual loss.1 fungal hyphae can persist in tissue several months after Double penetrating (perforating) injuries represent a obtaining negative microbiology swabs.14 separate group which generally have a poorer prognosis?-4 Various surgical options are available to The authors would like to thank Dr jane Leach of the deal with perforating eye injuries. Beneficial effects of microbiology department at Kingston Hospital for her help in vitrectomy in the management of perforating eye injuries the presentation of this case. have been reported,4 and scleral bucklingS,6 procedures with or without intravitreal gas injection also have a role References in the management of perforating eye injuries. We present two cases of double penetrating eye injuries 1. Rippon jW. Medical mycology: the pathogenic fungi and the pathogenic actinomycetes. 3rd ed. Philadelphia: Saunders, caused by slender sharp-tipped objects which were 1988. successfully managed conservatively. 2. McGuire TW, Bullock jO, Bullock jO jR, Elder BL, Funkhouser JW. Fungal endophthalmitis: an experimental study with a review of 17 human ocular cases.
    [Show full text]