Unified Theory of Wave-Particle Duality, the Schrödinger Equations, and Quantum Diffraction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Characterization of the Wave Propagation Behaviour of Multi-Stable Periodic Cellular Materials∗
Computational Characterization of the Wave Propagation Behaviour of Multi-Stable Periodic Cellular Materials∗ Camilo Valencia1, David Restrepo2,4, Nilesh D. Mankame3, Pablo D. Zavattieri 2y , and Juan Gomez 1z 1Civil Engineering Department, Universidad EAFIT, Medell´ın,050022, Colombia 2Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA 3Vehicle Systems Research Laboratory, General Motors Global Research & Development, Warren, MI 48092, USA. 4Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract In this work, we present a computational analysis of the planar wave propagation behavior of a one-dimensional periodic multi-stable cellular material. Wave propagation in these ma- terials is interesting because they combine the ability of periodic cellular materials to exhibit stop and pass bands with the ability to dissipate energy through cell-level elastic instabilities. Here, we use Bloch periodic boundary conditions to compute the dispersion curves and in- troduce a new approach for computing wide band directionality plots. Also, we deconstruct the wave propagation behavior of this material to identify the contributions from its various structural elements by progressively building the unit cell, structural element by element, from a simple, homogeneous, isotropic primitive. Direct integration time domain analyses of a representative volume element at a few salient frequencies in the stop and pass bands are used to confirm the existence of partial band gaps in the response of the cellular material. Insights gained from the above analyses are then used to explore modifications of the unit cell that allow the user to tune the band gaps in the response of the material. -
Classical and Modern Diffraction Theory
Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Classical and Modern Diffraction Theory Edited by Kamill Klem-Musatov Henning C. Hoeber Tijmen Jan Moser Michael A. Pelissier SEG Geophysics Reprint Series No. 29 Sergey Fomel, managing editor Evgeny Landa, volume editor Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Society of Exploration Geophysicists 8801 S. Yale, Ste. 500 Tulsa, OK 74137-3575 U.S.A. # 2016 by Society of Exploration Geophysicists All rights reserved. This book or parts hereof may not be reproduced in any form without permission in writing from the publisher. Published 2016 Printed in the United States of America ISBN 978-1-931830-00-6 (Series) ISBN 978-1-56080-322-5 (Volume) Library of Congress Control Number: 2015951229 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3701993/frontmatter.pdf by guest on 29 September 2021 Dedication We dedicate this volume to the memory Dr. Kamill Klem-Musatov. In reading this volume, you will find that the history of diffraction We worked with Kamill over a period of several years to compile theory was filled with many controversies and feuds as new theories this volume. This volume was virtually ready for publication when came to displace or revise previous ones. Kamill Klem-Musatov’s Kamill passed away. He is greatly missed. new theory also met opposition; he paid a great personal price in Kamill’s role in Classical and Modern Diffraction Theory goes putting forth his theory for the seismic diffraction forward problem. -
Vector Wave Propagation Method Ein Beitrag Zum Elektromagnetischen Optikrechnen
Vector Wave Propagation Method Ein Beitrag zum elektromagnetischen Optikrechnen Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Universitat¨ Mannheim vorgelegt von Dipl.-Inf. Matthias Wilhelm Fertig aus Mannheim Mannheim, 2011 Dekan: Prof. Dr.-Ing. Wolfgang Effelsberg Universitat¨ Mannheim Referent: Prof. Dr. rer. nat. Karl-Heinz Brenner Universitat¨ Heidelberg Korreferent: Prof. Dr.-Ing. Elmar Griese Universitat¨ Siegen Tag der mundlichen¨ Prufung:¨ 18. Marz¨ 2011 Abstract Based on the Rayleigh-Sommerfeld diffraction integral and the scalar Wave Propagation Method (WPM), the Vector Wave Propagation Method (VWPM) is introduced in the thesis. It provides a full vectorial and three-dimensional treatment of electromagnetic fields over the full range of spatial frequen- cies. A model for evanescent modes from [1] is utilized and eligible config- urations of the complex propagation vector are identified to calculate total internal reflection, evanescent coupling and to maintain the conservation law. The unidirectional VWPM is extended to bidirectional propagation of vectorial three-dimensional electromagnetic fields. Totally internal re- flected waves and evanescent waves are derived from complex Fresnel coefficients and the complex propagation vector. Due to the superposition of locally deformed plane waves, the runtime of the WPM is higher than the runtime of the BPM and therefore an efficient parallel algorithm is de- sirable. A parallel algorithm with a time-complexity that scales linear with the number of threads is presented. The parallel algorithm contains a mini- mum sequence of non-parallel code which possesses a time complexity of the one- or two-dimensional Fast Fourier Transformation. The VWPM and the multithreaded VWPM utilize the vectorial version of the Plane Wave Decomposition (PWD) in homogeneous medium without loss of accuracy to further increase the simulation speed. -
Intensity of Double-Slit Pattern • Three Or More Slits
• Intensity of double-slit pattern • Three or more slits Practice: Chapter 37, problems 13, 14, 17, 19, 21 Screen at ∞ θ d Path difference Δr = d sin θ zero intensity at d sinθ = (m ± ½ ) λ, m = 0, ± 1, ± 2, … max. intensity at d sinθ = m λ, m = 0, ± 1, ± 2, … 1 Questions: -what is the intensity of the double-slit pattern at an arbitrary position? -What about three slits? four? five? Find the intensity of the double-slit interference pattern as a function of position on the screen. Two waves: E1 = E0 sin(ωt) E2 = E0 sin(ωt + φ) where φ =2π (d sin θ )/λ , and θ gives the position. Steps: Find resultant amplitude, ER ; then intensities obey where I0 is the intensity of each individual wave. 2 Trigonometry: sin a + sin b = 2 cos [(a-b)/2] sin [(a+b)/2] E1 + E2 = E0 [sin(ωt) + sin(ωt + φ)] = 2 E0 cos (φ / 2) cos (ωt + φ / 2)] Resultant amplitude ER = 2 E0 cos (φ / 2) Resultant intensity, (a function of position θ on the screen) I position - fringes are wide, with fuzzy edges - equally spaced (in sin θ) - equal brightness (but we have ignored diffraction) 3 With only one slit open, the intensity in the centre of the screen is 100 W/m 2. With both (identical) slits open together, the intensity at locations of constructive interference will be a) zero b) 100 W/m2 c) 200 W/m2 d) 400 W/m2 How does this compare with shining two laser pointers on the same spot? θ θ sin d = d Δr1 d θ sin d = 2d θ Δr2 sin = 3d Δr3 Total, 4 The total field is where φ = 2π (d sinθ )/λ •When d sinθ = 0, λ , 2λ, .. -
Superconducting Metamaterials for Waveguide Quantum Electrodynamics
ARTICLE DOI: 10.1038/s41467-018-06142-z OPEN Superconducting metamaterials for waveguide quantum electrodynamics Mohammad Mirhosseini1,2,3, Eunjong Kim1,2,3, Vinicius S. Ferreira1,2,3, Mahmoud Kalaee1,2,3, Alp Sipahigil 1,2,3, Andrew J. Keller1,2,3 & Oskar Painter1,2,3 Embedding tunable quantum emitters in a photonic bandgap structure enables control of dissipative and dispersive interactions between emitters and their photonic bath. Operation in 1234567890():,; the transmission band, outside the gap, allows for studying waveguide quantum electro- dynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite-range emitter–emitter interactions via bound photonic states. Here, we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low-loss, low-disorder lumped-element microwave resonators. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng = 450, we observe an anomalous Lamb shift of −28 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to short-lived radiatively damped and long-lived metastable qubit states. 1 Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA. 2 Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA. 3 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA. Correspondence and requests for materials should be addressed to O.P. -
Electromagnetism As Quantum Physics
Electromagnetism as Quantum Physics Charles T. Sebens California Institute of Technology May 29, 2019 arXiv v.3 The published version of this paper appears in Foundations of Physics, 49(4) (2019), 365-389. https://doi.org/10.1007/s10701-019-00253-3 Abstract One can interpret the Dirac equation either as giving the dynamics for a classical field or a quantum wave function. Here I examine whether Maxwell's equations, which are standardly interpreted as giving the dynamics for the classical electromagnetic field, can alternatively be interpreted as giving the dynamics for the photon's quantum wave function. I explain why this quantum interpretation would only be viable if the electromagnetic field were sufficiently weak, then motivate a particular approach to introducing a wave function for the photon (following Good, 1957). This wave function ultimately turns out to be unsatisfactory because the probabilities derived from it do not always transform properly under Lorentz transformations. The fact that such a quantum interpretation of Maxwell's equations is unsatisfactory suggests that the electromagnetic field is more fundamental than the photon. Contents 1 Introduction2 arXiv:1902.01930v3 [quant-ph] 29 May 2019 2 The Weber Vector5 3 The Electromagnetic Field of a Single Photon7 4 The Photon Wave Function 11 5 Lorentz Transformations 14 6 Conclusion 22 1 1 Introduction Electromagnetism was a theory ahead of its time. It held within it the seeds of special relativity. Einstein discovered the special theory of relativity by studying the laws of electromagnetism, laws which were already relativistic.1 There are hints that electromagnetism may also have held within it the seeds of quantum mechanics, though quantum mechanics was not discovered by cultivating those seeds. -
Light and Matter Diffraction from the Unified Viewpoint of Feynman's
European J of Physics Education Volume 8 Issue 2 1309-7202 Arlego & Fanaro Light and Matter Diffraction from the Unified Viewpoint of Feynman’s Sum of All Paths Marcelo Arlego* Maria de los Angeles Fanaro** Universidad Nacional del Centro de la Provincia de Buenos Aires CONICET, Argentine *[email protected] **[email protected] (Received: 05.04.2018, Accepted: 22.05.2017) Abstract In this work, we present a pedagogical strategy to describe the diffraction phenomenon based on a didactic adaptation of the Feynman’s path integrals method, which uses only high school mathematics. The advantage of our approach is that it allows to describe the diffraction in a fully quantum context, where superposition and probabilistic aspects emerge naturally. Our method is based on a time-independent formulation, which allows modelling the phenomenon in geometric terms and trajectories in real space, which is an advantage from the didactic point of view. A distinctive aspect of our work is the description of the series of transformations and didactic transpositions of the fundamental equations that give rise to a common quantum framework for light and matter. This is something that is usually masked by the common use, and that to our knowledge has not been emphasized enough in a unified way. Finally, the role of the superposition of non-classical paths and their didactic potential are briefly mentioned. Keywords: quantum mechanics, light and matter diffraction, Feynman’s Sum of all Paths, high education INTRODUCTION This work promotes the teaching of quantum mechanics at the basic level of secondary school, where the students have not the necessary mathematics to deal with canonical models that uses Schrodinger equation. -
Matter Wave Speckle Observed in an Out-Of-Equilibrium Quantum Fluid
Matter wave speckle observed in an out-of-equilibrium quantum fluid Pedro E. S. Tavaresa, Amilson R. Fritscha, Gustavo D. Tellesa, Mahir S. Husseinb, Franc¸ois Impensc, Robin Kaiserd, and Vanderlei S. Bagnatoa,1 aInstituto de F´ısica de Sao˜ Carlos, Universidade de Sao˜ Paulo, 13560-970 Sao˜ Carlos, SP, Brazil; bDepartamento de F´ısica, Instituto Tecnologico´ de Aeronautica,´ 12.228-900 Sao˜ Jose´ dos Campos, SP, Brazil; cInstituto de F´ısica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil; and dUniversite´ Nice Sophia Antipolis, Institut Non-Lineaire´ de Nice, CNRS UMR 7335, F-06560 Valbonne, France Contributed by Vanderlei Bagnato, October 16, 2017 (sent for review August 14, 2017; reviewed by Alexander Fetter, Nikolaos P. Proukakis, and Marlan O. Scully) We report the results of the direct comparison of a freely expanding turbulent Bose–Einstein condensate and a propagating optical speckle pattern. We found remarkably similar statistical properties underlying the spatial propagation of both phenomena. The cal- culated second-order correlation together with the typical correlation length of each system is used to compare and substantiate our observations. We believe that the close analogy existing between an expanding turbulent quantum gas and a traveling optical speckle might burgeon into an exciting research field investigating disordered quantum matter. matter–wave j speckle j quantum gas j turbulence oherent matter–wave systems such as a Bose–Einstein condensate (BEC) or atom lasers and atom optics are reality and relevant Cresearch fields. The spatial propagation of coherent matter waves has been an interesting topic for many theoretical (1–3) and experimental studies (4–7). -
Title: the Distribution of an Illustrated Timeline Wall Chart and Teacher's Guide of 20Fh Century Physics
REPORT NSF GRANT #PHY-98143318 Title: The Distribution of an Illustrated Timeline Wall Chart and Teacher’s Guide of 20fhCentury Physics DOE Patent Clearance Granted December 26,2000 Principal Investigator, Brian Schwartz, The American Physical Society 1 Physics Ellipse College Park, MD 20740 301-209-3223 [email protected] BACKGROUND The American Physi a1 Society s part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20thcentury physics. This resulted in eleven consecutive posters, which when mounted side by side, create a %foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society . Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays’ subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color- coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic This report was prepared as an account of work sponsored by an agency of the United States Government. -
A Photomechanics Study of Wave Propagation John Barclay Ligon Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 A photomechanics study of wave propagation John Barclay Ligon Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Applied Mechanics Commons Recommended Citation Ligon, John Barclay, "A photomechanics study of wave propagation " (1971). Retrospective Theses and Dissertations. 4556. https://lib.dr.iastate.edu/rtd/4556 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-12,567 LIGON, John Barclay, 1940- A PHOTOMECHANICS STUDY OF WAVE PROPAGATION. Iowa State University, Ph.D., 1971 Engineering Mechanics University Microfilms. A XEROX Company, Ann Arbor. Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED A photomechanics study of wave propagation John Barclay Ligon A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject; Engineering Mechanics Approved Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1971 PLEASE NOTE; Some pages have indistinct print. -
The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) .... -
Simple Cubic Lattice
Chem 253, UC, Berkeley What we will see in XRD of simple cubic, BCC, FCC? Position Intensity Chem 253, UC, Berkeley Structure Factor: adds up all scattered X-ray from each lattice points in crystal n iKd j Sk e j1 K ha kb lc d j x a y b z c 2 I(hkl) Sk 1 Chem 253, UC, Berkeley X-ray scattered from each primitive cell interfere constructively when: eiKR 1 2d sin n For n-atom basis: sum up the X-ray scattered from the whole basis Chem 253, UC, Berkeley ' k d k d di R j ' K k k Phase difference: K (di d j ) The amplitude of the two rays differ: eiK(di d j ) 2 Chem 253, UC, Berkeley The amplitude of the rays scattered at d1, d2, d3…. are in the ratios : eiKd j The net ray scattered by the entire cell: n iKd j Sk e j1 2 I(hkl) Sk Chem 253, UC, Berkeley For simple cubic: (0,0,0) iK0 Sk e 1 3 Chem 253, UC, Berkeley For BCC: (0,0,0), (1/2, ½, ½)…. Two point basis 1 2 iK ( x y z ) iKd j iK0 2 Sk e e e j1 1 ei (hk l) 1 (1)hkl S=2, when h+k+l even S=0, when h+k+l odd, systematical absence Chem 253, UC, Berkeley For BCC: (0,0,0), (1/2, ½, ½)…. Two point basis S=2, when h+k+l even S=0, when h+k+l odd, systematical absence (100): destructive (200): constructive 4 Chem 253, UC, Berkeley Observable diffraction peaks h2 k 2 l 2 Ratio SC: 1,2,3,4,5,6,8,9,10,11,12.