ORIGINAL COMMUNICATION the Thymus Gland Is a Target in Malnutrition

Total Page:16

File Type:pdf, Size:1020Kb

ORIGINAL COMMUNICATION the Thymus Gland Is a Target in Malnutrition European Journal of Clinical Nutrition (2002) 56, Suppl 3, S46–S49 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION The thymus gland is a target in malnutrition W Savino1,2* 1Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and 2CNRS UMR 8603, Universite´ Paris V, Hoˆpital Necker, Paris, France Malnutrition, secondary to deficiency in uptake of proteins, metal elements or vitamins, consistently results in changes in the thymus gland. The organ undergoes a severe atrophy due to apoptosis-induced thymocyte depletion, particularly affecting the immature CD4þ CD8þ cells, as well as a decrease in cell proliferation. Such a feature is apparently linked to a hormonal imbalance, involving decrease of leptin and consequent raise of glucocorticoid hormone levels in the serum. Interestingly, this picture can be reversed after appropriate diet rehabilitation. The thymic microenvironment is also affected in malnutrition: morphological changes in thymic epithelial cells were found, together with a decrease of thymic hormone production by these cells. Additionally, intrathymic contents of extracellular proteins, such as fibronectin, laminin and collagens, are increased in the thymuses from malnourished children. Conjointly, the bulk of data discussed herein clearly points to the notion that the thymus gland is a target in malnutrition. Nevertheless, further relevant information regarding the physiology of the thymus, including the cytokine=chemokine secretion as well as the positive and negative selection events driven by TCR=MHC-peptide interactions in malnutrition, remains to be defined. These are questions that need to be answered in order to have a better understanding of the immunodeficiency seen in malnourished individuals. European Journal of Clinical Nutrition (2002) 56, Suppl 3, S46 – S49. doi:10.1038=sj.ejcn.1601485 Keywords: thymus; malnutrition; thymocytes; thymic epithelium; thymulin; extracellular matrix; glucocorticoid hormones Introduction ultimately leading to migration of positively selected thy- It has been a long time since scientists noticed that, in the mocytes to the T-cell-dependent areas of peripheral lym- context of the malnutrition-related immunodeficiency, the phoid organs. Such a process involves sequential thymus undergoes a variety of alterations, with a severe expression of various proteins and rearrangements of the T- atrophy of the organ representing one major change cell receptor (TCR) genes. The most immature thymocytes (reviewed in Chandra, 1992). This is so consistent that the express neither the TCR complex nor the CD4 or CD8 thymus is accepted as a barometer of malnutrition. accessory molecules; they are called double-negative thymo- As detailed below, distinct cellular compartments of the cytes, and represent 5% of total thymocytes. organ are affected in malnourished individuals, with Maturation progresses with the acquisition of CD4 and changes in various aspects of thymic cell behaviour such as CD8 markers, generating the CD4þ CD8þ double-positive proliferation, death and secretion. Nevertheless, before com- cells, which comprise 80% of the whole population. In piling and discussing these data, it is worthwhile to provide a this stage, TCR genes are rearranged, and productive general background of the thymic microenvironment and its rearrangements yield the membrane expression of the role upon intrathymic T cell differentiation. TCR (complexed with the CD3) in low densities (TCRlow). Thymocytes that do not undergo a productive TCR gene rearrangement die by apoptosis, whereas those The thymic microenvironment and its role in T-cell expressing productive TCR will interact with peptides differentiation presented by molecules of the major histocompatibility The thymus is a primary lymphoid organ, in which bone complex (MHC), expressed on microenvironmental cells. marrow-derived T-cell precursors undergo differentiation, This interaction will determine the positive and negative selection events, crucial for normal thymocyte differentia- tion. Positively selected thymocytes progress to the mature TCRhigh CD4þCD87 or TCRhigh CD47CD8þ *Correspondence: W Savino, Hoˆpital Necker, CNRS UMR 8603, Universite´ Paris V, 161 rue de Se`vres, 75743 Paris Cedex 15, France. single positive stage, comprising 15% of thymocytes E-mail: [email protected] that ultimately leave the organ to form the large majority Thymus gland and malnutrition W Savino S47 of the peripheral T cell repertoire (reviewed in Savino & cortical thymocyte depletion is a consistent finding in Dardenne, 2000). necropsies of malnourished subjects (Chandra, 1992; Lyra Thymocyte differentiation occurs as cells migrate within et al, 1993). Indeed, by means of echography, atrophy of the the thymic lobules: TCR7CD47 CD87 and TCRþCD4þCD8þ organ was also observed in vivo in malnourished children are cortically located, whereas mature TCRþ CD4þCD87 and (Parent et al, 1994). Nevertheless, such alterations seem to be TCRþCD47CD8þ cells are found in the medulla. Along this reversible if appropriate diet is provided. This concept journey, thymocytes interact with various components of emerges from an interesting longitudinal study carried out the thymic microenvironment, a tridimensional network with Bolivian severely malnourished children that were formed of thymic epithelial cells (TEC), macrophages, den- treated for nutrition rehabilitation (Chevalier et al, 1996). dritic cells, fibroblasts and extracellular matrix components. Thymus size was assessed weekly by mediastinal ultrasound In addition to the key interaction, involving the TCR=pep- scanning. Compared to controls, the malnourished group peptide-MHC, in the context of CD8 or CD4 molecules, the had severe involution of the thymus, a significantly higher thymic microenvironment influences thymocyte maturation proportion of circulating immature T lymphocytes and a via adhesion molecules and extracellular matrix (ECM); lower proportion of mature T lymphocytes. The 2 month interactions that are relevant for thymocyte migration. longitudinal study showed that normal anthropometric Moreover, microenvironmental cells modulate thymocyte values were recovered after 1 month of diet rehabilitation, differentiation by soluble polypeptides, comprising: (a) cyto- whereas recovery of the thymic area required 2 months. This kines, such as interleukin-1 (IL-1), IL-3, IL-6, IL-7, IL-8 and may explain the frequent relapses among some malnour- stem cell factor; (b) chemokines; and (c): thymic hormones, ished children, discharged after 1 month on the basis of including thymulin, thymopoietin and thymosin-a1 (Savino apparent nutritional health. Thus, the evaluation of the & Dardenne, 2000). thymus can be placed as an interesting tool for diagnostic= prognostic of immune recovery in humans treated for malnutrition. Phenotypic and functional changes of thymocytes in malnutrition As stated above, one of the most conspicuous changes in Is there a hormonal control of the malnutrition — malnutrition is thymic atrophy. This phenomenon is largely induced thymocyte depletion? (but not exclusively) due to changes in the lymphoid com- It is now well established that the physiology of the thymus partment. In fact, thymocyte depletion appears as an out- (including both lymphoid and microenvironmental com- come of both acute and chronic experimental protein partments) is under neuroendocrine control (Savino & Dard- malnutrition. The main phenotypic feature of this depletion enne, 2000). In this context, it is conceivable that distinct is the loss of immature CD4þCD8þ cells, a finding consis- pathological states in the organism can affect such a hormo- tently seen in malnutrition secondary to protein, metal nal influence upon the thymus. It has been shown that element — including zinc, magnesium and iron — or vitamin glucocorticoid-circulating levels are increased in protein- deficiency diets (Chandra, 1992; Kuvibidila et al, 1990; Dhur malnourished mice, as compared to age-matched controls. et al, 1991; Malpuech-Brugere et al, 1999). As recently Additionally, implanted corticosterone-containing pellets, demonstrated in rats exposed to deficiencies of Mg or Zn, able to generate glucocorticoid serum levels equivalent to the consequent thymocyte depletion actually reflects a mas- those found in malnourished mice, were sufficient to yield sive apoptosis of these cells in the organ (Malpuech-Brugere thymocyte depletion (Barone et al, 1993). Accordingly, it was et al, 1999; Nodera et al, 2001). demonstrated that the atrophy of the organ was prevented in In addition to the increase in thymocyte death seen in animals that were adrenalectomized prior to being exposed thymuses from malnourished individuals, thymocyte prolif- to a zinc-deficient diet (Fraker et al, 1995). eration seems to be affected, since the numbers of thymic It is noteworthy that in mice submitted to acute starva- cells labelled with PCNA (proliferating cell nuclear antigen) tion, in addition to the severe thymocyte depletion and rise marker are diminished in malnourished rats (Mitsumori et al, in serum corticosterone, a significant diminution in the 1996). This finding is further supported by the data showing levels of the adipocyte-derived hormone leptin has been that thymocytes from animals subjected to distinct protocols detected. Furthermore, injection of recombinant leptin of diet restriction exhibited a low mitogen-induced prolif- could
Recommended publications
  • Adaptive Immune Systems
    Immunology 101 (for the Non-Immunologist) Abhinav Deol, MD Assistant Professor of Oncology Wayne State University/ Karmanos Cancer Institute, Detroit MI Presentation originally prepared and presented by Stephen Shiao MD, PhD Department of Radiation Oncology Cedars-Sinai Medical Center Disclosures Bristol-Myers Squibb – Contracted Research What is the immune system? A network of proteins, cells, tissues and organs all coordinated for one purpose: to defend one organism from another It is an infinitely adaptable system to combat the complex and endless variety of pathogens it must address Outline Structure of the immune system Anatomy of an immune response Role of the immune system in disease: infection, cancer and autoimmunity Organs of the Immune System Major organs of the immune system 1. Bone marrow – production of immune cells 2. Thymus – education of immune cells 3. Lymph Nodes – where an immune response is produced 4. Spleen – dual role for immune responses (especially antibody production) and cell recycling Origins of the Immune System B-Cell B-Cell Self-Renewing Common Progenitor Natural Killer Lymphoid Cell Progenitor Thymic T-Cell Selection Hematopoetic T-Cell Stem Cell Progenitor Dendritic Cell Myeloid Progenitor Granulocyte/M Macrophage onocyte Progenitor The Immune Response: The Art of War “Know your enemy and know yourself and you can fight a hundred battles without disaster.” -Sun Tzu, The Art of War Immunity: Two Systems and Their Key Players Adaptive Immunity Innate Immunity Dendritic cells (DC) B cells Phagocytes (Macrophages, Neutrophils) Natural Killer (NK) Cells T cells Dendritic Cells: “Commanders-in-Chief” • Function: Serve as the gateway between the innate and adaptive immune systems.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Under the Human Keratin 14 Promoter Expressed Autoimmune Disease to an Antigen a Spontaneous CD8 T Cell-Dependent
    A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human Keratin 14 Promoter This information is current as Maureen A. McGargill, Dita Mayerova, Heather E. Stefanski, of September 26, 2021. Brent Koehn, Evan A. Parke, Stephen C. Jameson, Angela Panoskaltsis-Mortari and Kristin A. Hogquist J Immunol 2002; 169:2141-2147; ; doi: 10.4049/jimmunol.169.4.2141 http://www.jimmunol.org/content/169/4/2141 Downloaded from References This article cites 44 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/169/4/2141.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human Keratin 14 Promoter1 Maureen A. McGargill,*‡ Dita Mayerova,*‡ Heather E.
    [Show full text]
  • Thymus Growth an Epithelial Progenitor Pool Regulates
    An Epithelial Progenitor Pool Regulates Thymus Growth William E. Jenkinson, Andrea Bacon, Andrea J. White, Graham Anderson and Eric J. Jenkinson This information is current as of October 1, 2021. J Immunol 2008; 181:6101-6108; ; doi: 10.4049/jimmunol.181.9.6101 http://www.jimmunol.org/content/181/9/6101 Downloaded from References This article cites 35 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/181/9/6101.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology An Epithelial Progenitor Pool Regulates Thymus Growth1 William E. Jenkinson, Andrea Bacon, Andrea J. White, Graham Anderson, and Eric J. Jenkinson2 Thymic epithelium provides an essential cellular substrate for T cell development and selection. Gradual age-associated thymic atrophy leads to a reduction in functional thymic tissue and a decline in de novo T cell generation.
    [Show full text]
  • Pre-Clinical Efficacy and Safety Evaluation of Human Amniotic Fluid-Derived Stem Cell Injection in a Mouse Model of Urinary Incontinence
    http://dx.doi.org/10.3349/ymj.2015.56.3.648 Original Article pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 56(3):648-657, 2015 Pre-Clinical Efficacy and Safety Evaluation of Human Amniotic Fluid-Derived Stem Cell Injection in a Mouse Model of Urinary Incontinence Jae Young Choi,1* So Young Chun,2* Bum Soo Kim,1 Hyun Tae Kim,1 Eun Sang Yoo,1 Yun-Hee Shon,2 Jeong Ok Lim,2 Seok Joong Yun,3 Phil Hyun Song,4 Sung Kwang Chung,1 James J Yoo,2,5 and Tae Gyun Kwon1,2 1Department of Urology, School of Medicine, Kyungpook National University, Daegu; 2Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu; 3Department of Urology, College of Medicine, Chungbuk National University, Cheongju; 4Department of Urology, College of Medicine, Yeungnam University, Daegu, Korea; 5Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA. Received: March 31, 2014 Purpose: Stem cell-based therapies represent new promises for the treatment of Revised: August 10, 2014 urinary incontinence. This study was performed to assess optimized cell passage Accepted: August 13, 2014 number, cell dose, therapeutic efficacy, feasibility, toxicity, and cell trafficking for Corresponding author: Dr. Tae Gyun Kwon, the first step of the pre-clinical evaluation of human amniotic fluid stem cell (hAF- Department of Urology, School of Medicine, Kyungpook National University, SC) therapy in a urinary incontinence animal model. Materials and Methods: 130 Dongdeok-ro, Jung-gu, The proper cell passage number was analyzed with hAFSCs at passages 4, 6, and Daegu 700-721, Korea.
    [Show full text]
  • Successful Repair Using Thymus Pedicle Flap for Tracheoesophageal Fistula: a Case Report
    Fukumoto et al. Surgical Case Reports (2018) 4:49 https://doi.org/10.1186/s40792-018-0458-8 CASEREPORT Open Access Successful repair using thymus pedicle flap for tracheoesophageal fistula: a case report Yoji Fukumoto*, Tomoyuki Matsunaga, Yuji Shishido, Masataka Amisaki, Yusuke Kono, Yuki Murakami, Hirohiko Kuroda, Tomohiro Osaki, Teruhisa Sakamoto, Soichiro Honjo, Keigo Ashida, Hiroaki Saito and Yoshiyuki Fujiwara Abstract Background: Treatment for tracheoesophageal fistula (TEF), a life-threatening complication after esophagectomy, is challenging. Case presentation: A 75-year-old man with thoracic esophageal cancer underwent subtotal esophagectomy and gastric tube reconstruction through the post-mediastinal root after neoadjuvant chemotherapy. Owing to postoperative anastomotic leakage, an abscess formed at the anastomotic region. Sustained inflammation from the abscess caused refractory TEF between the esophagogastric anastomotic site and membrane of the trachea, and several conservative therapies for TEF failed. Hence, the patient underwent surgery including division of the fistula, direct suturing of the leakage sites, and reinforcement with the flap of the thymus pedicle. As a result, the abscess and TEF disappeared after surgery and the patient was immediately administered an oral diet and discharged home 103 days after initial surgery. Conclusions: Although pedicle flaps for the reinforcement of TEF are usually obtained from muscle or pericardium, these flaps need enough lengths to overcome moving distance. We are the first in
    [Show full text]
  • Lymphatic Leukemia with Thymic Enlargement: a Brief Review of the Literature .With Case Reports
    LYMPHATIC LEUKEMIA WITH THYMIC ENLARGEMENT: A BRIEF REVIEW OF THE LITERATURE .WITH CASE REPORTS LLOYD F. CRAVER, M.D, AND WILLIAM S. MACCOMB, M.D. Memorial Hospital, New York Slight enlargement of the thymus may perhaps be present in lymphatic leukemia more frequently than is recorded in the litera- ture. This enlargement may be a true lymphosarcoma or thy- moma, or only a hyperplasia of lymphoid tissue. In a considerable series of cases a large sarcomatous tumor of the thymus with a leukemic blood picture has been the chief fea- ture, so that leukemia with involvement of the thymus came t.~be recognized as an atypical and malignant variety (1). These growt,hs have been designated by Orth as malignant leukemic lymphoma (2). As noted by Kaufmann (3), ('in leukemia, marked enlargement of the thymus gland is occasionally seen, especially in acute lym- phatic leukemia." The rapid growth of the thymus may be out of all proportion to the hyperplasia of other lymphatic structures and to the blood picture, thus giving rise to a mistaken diagnosis of thymoma as an entity. As stated by Heubner (4)) "with thymic tumors the other lesions of leukemia have not always been fully developed." Milne (5) in 1913 reported an unusual case of lymphatic leuke- mia which at autopsy revealed a mass of hyperplastic lymphoid tissue in the upper mediastinum, attached to the pericardium. This mass was ascribed to a hyperplasia of the anterior mediastinal lymph nodes and most probably the thymus, though no Hassall's corpuscles could be demonstrated. In 1925 Friedlander and Foote (6) reported a case of "malig- nant small-celled thymoma with acute lymphoid leukemia." Here the unripe lymph~blast~sof the blood stream so closely resembled the cells of the thymic tumor found at autopsy that the question arose-was the source of the abnormal cells of the blood an out- break of the tumor through the wall of some vein, or was the whole 277 278 LLOYD F.
    [Show full text]
  • Concurrent Intrathyroidal Thymus and Parathyroid in a Patient with Papillary Thyroid Carcinoma: a Challenging Diagnosis
    ID: 17-0015 10.1530/EDM-17-0015 G Velimezis and others Intrathyroidal thymus and ID: 17-0015; June 2017 parathyroid DOI: 10.1530/EDM-17-0015 Concurrent intrathyroidal thymus and parathyroid in a patient with papillary thyroid carcinoma: a challenging diagnosis Correspondence 1 1 1 2 Georgios Velimezis , Argyrios Ioannidis , Sotirios Apostolakis , Maria Chorti , should be addressed Charalampos Avramidis1 and Evripidis Papachristou1 to S Apostolakis Email Departments of 1Surgery and 2Pathology, Sismanoglion Hospital, Amarousion, Greece [email protected] Summary During embryogenesis, the thymus and inferior parathyroid glands develop from the third pharyngeal pouch and migrate to their definite position. During this process, several anatomic variations may arise, with the thyroid being one of the most common sites of ectopic implantation for both organs. Here, we report the case of a young female patient, who underwent total thyroidectomy for papillary carcinoma of the thyroid. The patient’s history was remarkable for disorders of the genitourinary system. Histologic examination revealed the presence of well-differentiated intrathyroidal thymic tissue, containing an inferior parathyroid gland. While each individual entity has been well documented, this is one of the few reports in which concurrent presentation is reported. Given the fact that both the thymus and the inferior parathyroid are derivatives of the same embryonic structure (i.e. the third pharyngeal pouch), it is speculated that the present condition resulted from a failure in separation and migrationp during organogenesis. Learning points: • Intrathyroidal thymus and parathyroid are commonly found individually, but rarely concurrently. • It is a benign and asymptomatic condition. • Differential diagnosis during routine workup with imaging modalities can be challenging.
    [Show full text]
  • Infection T Cells Home to the Thymus and Control
    T Cells Home to the Thymus and Control Infection Claudia Nobrega, Cláudio Nunes-Alves, Bruno Cerqueira-Rodrigues, Susana Roque, Palmira Barreira-Silva, This information is current as Samuel M. Behar and Margarida Correia-Neves of September 28, 2021. J Immunol 2013; 190:1646-1658; Prepublished online 11 January 2013; doi: 10.4049/jimmunol.1202412 http://www.jimmunol.org/content/190/4/1646 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/01/14/jimmunol.120241 Material 2.DC1 http://www.jimmunol.org/ References This article cites 62 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/190/4/1646.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology T Cells Home to the Thymus and Control Infection Claudia Nobrega,*,†,1 Cla´udio Nunes-Alves,*,†,‡,1 Bruno Cerqueira-Rodrigues,*,† Susana Roque,*,† Palmira Barreira-Silva,*,† Samuel M.
    [Show full text]
  • Neuro-Immune Modulation of the Thymus Microenvironment (Review)
    1392 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 33: 1392-1400, 2014 Neuro-immune modulation of the thymus microenvironment (Review) FIORENZO MIGNINI1, MAURIZIO SABBATINI2, LAURA MATTIOLI1, MONICA COSENZA1, MARCO ARTICO4 and CARLO CAVALLOTTI3 1Human Anatomy, School of Drug and Health Products Science, University of Camerino, Ι-62032 Camerino; 2Human Anatomy, Department of Health Sciences, University of Eastern Piedmont ̔Amedeo Avogadro̓, I-28100 Novara; Departments of 3Sensory Organs and 4Anatomical, Histological, Medico-legal and Locomotor System Sciences, Sapienza University of Rome, Ι-00185 Rome, Italy Received December 3, 2013; Accepted February 13, 2014 DOI: 10.3892/ijmm.2014.1709 Abstract. The thymus is the primary site for T-cell lympho- 1. Introduction poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells The thymus is the primary site for T-cell lymphopoiesis, to the periphery. These highly complex processes require providing a coordinated environment for critical factors to induce precise parenchymal organization and compartmentation and support lineage commitment, differentiation and survival of where a plethora of signalling pathways occur, performing thymus-seeding cells. The function of the thymus includes the strict control on the maturation and selection processes of maturation and selection of antigen-specific T cells and selective T lymphocytes. In this review, the main morphological char- release of these cells to the periphery. The maturation process acteristics of the thymus microenvironment, with particular consists of the development of T-cell antigen receptors with high emphasis on nerve fibers and neuropeptides were assessed, as diversity that are capable of binding to different antigens, while both are responsible for neuro-immune-modulation functions.
    [Show full text]
  • Tumours of the Thymus a Review of 88 Operation Cases
    Thorax: first published as 10.1136/thx.22.3.193 on 1 May 1967. Downloaded from Thorax (1967), 22, 193. Tumours of the thymus A review of 88 operation cases T. HOLMES SELLORS, A. C. THACKRAY, AND A. D. THOMSON From the Bland-Sutton Institute of Pathology, Middlesex Hospital, Lonldon, W.] Eighty-eight cases of thymoma are discussed with the object of trying to co-ordinate the histological and clinical features. The pathological specimens were in all cases obtained at operation. The pathology classification introduced by Thomson and Thackray in 1957 has been found to correspond adequately with the clinical pattern. The most common groups of tumours are basically epithelial and can be separated into five or six subdivisions, each of which has a separate pattern of behaviour. Lymphoid and teratomatous tumours also occur, but there were only two examples in this series. Clinically, separation of patients who suffered from myasthenia (38) and those who did not (50) affords the first main grouping. The majority of patients who had myasthenia gravis had tumours classified as epidermoid (19) and lympho- epithelial (14), the former with a more malignant appearance and behaviour than the latter. Removal of the tumour with or without radiation gave considerable and sometimes complete relief from myasthenic symptoms. Non-myasthenic thymoma (50) was usually discovered as a result of pressure signs or in the course of routine radiography. Spindle or oval celled tumours followed a benign pattern whereas undifferentiated thymoma was in every sense malignant, as also were teratomatous growths. Granulomatous or Hodgkin-like thymomas were of special interest and had an unpredictable course, some patients surviving many years after what was regarded as inadequate treatment.
    [Show full text]
  • WANG-THESIS-2019.Pdf
    RE-ENGINEERING THE MICROENVIRONMENT OF MICE THYMUS TO PROMOTE TOLERANCE TO A VCA TRANSPLANT by Jialu Wang A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Engineering Baltimore, Maryland May 2019 Abstract Nowadays, patients with a solid organ transplant or a vascularized composite allotransplant (VCA) transplant rely on life-long immunosuppression or a highly controversial bone marrow transplant to induce immune tolerance and to maintain their grafts. With only a few novel methods that attempt to induce donor-specific tolerance such as the splenocyte induced donor-specific tolerance, such methods target the peripheral tolerance mechanism instead of central tolerance.1 This study searches for a novel tolerance induction method that does not compromise the immune system with long-term immunosuppression, focuses on the practicality of inducing donor-specific central tolerance and aims to reduce graft-versus-host-disease seen in VCA. We hypothesize that through intrathymic injection of donor thymic epithelial cells after a hindlimb transplant, a possible donor-recipient hybrid thymus may achieve immunotolerance without the risk of graft-versus-host-disease induced by a bone marrow transplant. Some possible mechanisms that are impacted by the hybrid thymus are investigated. Although with many obstacles before this hybrid thymus idea could be translated into clinical treatment, the concept remains a potential option for the induction of VCA transplant tolerance. ii Acknowledgment I would like to thank the entire Vascularized Composite Allotransplantation Lab. The PIs, Dr. Giorgio Raimondi and Dr. Gerald Brandacher, are tremendously resourceful, guided me patiently through all the trouble-shooting and pointed me in the right direction when encountered obstacles.
    [Show full text]