Perovskite Stories from Around the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New and Sustainable Photovoltaics
New and Sustainable Photovoltaics The EPSRC Centre for Doctoral Training 2017 Review 2 The Centre for Doctoral Training New and Sustainable Photovoltaics 3 The EPSRC Centre for Doctoral Training in New and Sustainable Photovoltaics Contents All future energy forecasters agree on one thing: solar 03 - Director’s Foreword photovoltaics is now at the brink of mass adoption. But questions 04 - Partners remain. Where can the technology go from here? What’s in store 06 - How the Centre operates for the future of solar energy? The principal ambition of the 07 - The Cohort approach EPSRC Centre for Doctoral Training in New and Sustainable 08 - Research vision and key Photovoltaics, (known as CDT-PV), is to provide the future leaders themes who can answer these questions. Case Studies Led by the Universities of Liverpool and Bath, the Centre comprises seven leading academic institutions, the partners being Cambridge, Loughborough, 10 - SUPERGEN SuperSolar Hub 2[IRUG6KHIÀHOGDQG6RXWKDPSWRQ7KH&HQWUHLVDOVRVXSSRUWHGE\(LJKW Secondments LSA, NSG, Ossila, Oxford PV, M-Solv, Semimetrics and Silicon CPV. 11 - Research Cluster on We are training 60 of the best graduate students to guide PV in industry Perovskites and in universities. Students are registered for PhDs at each of the partner universities. In contrast to many CDTs, the research that will form their PhD 12 - Collaboration with a Large thesis is started at the beginning of the studentship. The principal skills Industrial Partner, NSG developed by our students are established by undertaking these projects. In 13 - Collaboration with a Small addition, each of our students undertakes a formal PV training course during WKHLUÀUVW\HDUYLVLWLQJHDFKRIWKHVHYHQSURJUDPPHQRGHVIRUWZRZHHNV Business, Ossila HDFK,QWKLVZD\WKH\GHYHORSQRWRQO\WKHVSHFLÀFNQRZOHGJHIRU39UHVHDUFK 14 - The CDT Student Community but experience the research environments of some of the UK’s leading 15 - Student Driven Training labs. -
Blueprint Staff Magazine for the University of Oxford | September 2016
blueprint Staff magazine for the University of Oxford | September 2016 Chemistry’s organic growth | Secrets of successful spelling | Oxford time News in brief u Oxford has topped the Times Higher research fellow at the college, set off at 6.30am Education World University Rankings for and arrived at Homerton, Harris Manchester’s 2016–17 – the first time in the 13-year history of twin college, in the afternoon. OxfordUniversity Images/Rob Judges the rankings that a UK institution has secured the top spot. The rankings judge research-intensive u The University’s phone system is being universities across five areas: teaching, research, replaced by a new service called Chorus. citations, international outlook and knowledge The service is being rolled out on a building- transfer. In total UK institutions took 91 of the by-building basis between autumn 2016 and 980 places, with the University of Cambridge spring 2018. Chorus will deliver replacement (fourth) and Imperial College London (eighth) phones together with access to a web portal, also making the top ten. which will provide additional functionality such as managing your voicemail, accessing u The University and local NHS partners have your call history, and sending and receiving won £126.5m to support medical research. instant messages. Details at https://projects.it. The money, from the National Institute for ox.ac.uk/icp. Health Research, includes £113.7m for the existing University of Oxford/Oxford University u The University has opened a new nursery Hospitals Biomedical Research Centre, and on the Old Road Campus in Headington, £12.8m for a new Biomedical Research Centre bringing the total number of University-owned specialising in mental health and dementia, nurseries to five. -
Deciphering Photocarrier Dynamics for Tuneable High-Performance Perovskite-Organic Semiconductor Heterojunction Phototransistors
Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors Item Type Article Authors Lin, Yen-Hung; Huang, Wentao; Pattanasattayavong, Pichaya; Lim, Jongchul; Li, Ruipeng; Sakai, Nobuya; Panidi, Julianna; Hong, Min Ji; Ma, Chun; Wei, Nini; Wehbe, Nimer; Fei, Zhuping; Heeney, Martin; Labram, John G.; Anthopoulos, Thomas D.; Snaith, Henry J. Citation Lin, Y.-H., Huang, W., Pattanasattayavong, P., Lim, J., Li, R., Sakai, N., … Snaith, H. J. (2019). Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 10(1). doi:10.1038/s41467-019-12481-2 Eprint version Publisher's Version/PDF DOI 10.1038/s41467-019-12481-2 Publisher Springer Nature Journal Nature Communications Rights Archived with thanks to Nature Communications Download date 26/09/2021 06:46:47 Link to Item http://hdl.handle.net/10754/658584 ARTICLE There are amendments to this paper https://doi.org/10.1038/s41467-019-12481-2 OPEN Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors Yen-Hung Lin 1,10*, Wentao Huang2,10, Pichaya Pattanasattayavong 3, Jongchul Lim 1, Ruipeng Li4, Nobuya Sakai1, Julianna Panidi 2, Min Ji Hong5, Chun Ma6, Nini Wei7, Nimer Wehbe7, Zhuping Fei8,9, Martin Heeney 8, John G. Labram 5, Thomas D. Anthopoulos 6* & Henry J. Snaith 1* 1234567890():,; Looking beyond energy harvesting, metal-halide perovskites offer great opportunities to revolutionise large-area photodetection technologies due to their high absorption coeffi- cients, long diffusion lengths, low trap densities and simple processability. However, suc- cessful extraction of photocarriers from perovskites and their conversion to electrical signals remain challenging due to the interdependency of photogain and dark current density. -
Curriculum Vitae Mercouri G
CURRICULUM VITAE MERCOURI G. KANATZIDIS Department of Chemistry, Northwestern University, Evanston, IL 60208 Phone 847-467-1541; Fax 847-491-5937; Website: http://chemgroups.northwestern.edu/kanatzidis/ Birth Date: 1957; Citizenship: US EXPERIENCE 8/06-Present: Professor of Chemistry, Northwestern University and Senior Scientist , Argonne National Laboratory, Materials Science Division, Argonne, IL 7/93-8/06: Professor of Chemistry, Michigan State University 7/91-6/93: Associate Professor, Michigan State University 7/87-6/91: Assistant Professor, Michigan State University EDUCATION Postdoctoral Fellow, 1987, Northwestern University Postdoctoral Associate, 1985, University of Michigan Ph.D. Inorganic Chemistry, 1984, University of Iowa B.S. Chemistry, November 1979, Aristotle University of Thessaloniki AWARDS • Presidential Young Investigator Award, National Science Foundation, 1989-1994 • ACS Inorganic Chemistry Division Award, EXXON Faculty Fellowship in Solid State Chemistry, 1990 • Beckman Young Investigator , 1992-1994 • Alfred P. Sloan Fellow, 1991-1993 • Camille and Henry Dreyfus Teacher Scholar, 1993-1998 • Michigan State University Distinguished Faculty Award, 1998 • Sigma Xi 2000 Senior Meritorious Faculty Award • University Distinguished Professor MSU, 2001 • John Simon Guggenheim Foundation Fellow, 2002 • Alexander von Humboldt Prize, 2003 • Morley Medal, American Chemical Society, Cleveland Section, 2003 • Charles E. and Emma H. Morrison Professor, Northwestern University, 2006 • MRS Fellow, Materials Research Society, 2010 • AAAS Fellow, American Association for the Advancment of Science, 2012 • Chetham Lecturer Award, University of California Santa Barbara, 2013 • Einstein Professor, Chinese Academy of Sciences, 2014 • International Thermoelectric Society Outstanding Achievement Award 2014 • MRS Medal 2014 • Royal Chemical Society DeGennes Prize 2015 • Elected Fellow of the Royal Chemical Society 2015 • ENI Award for the "Renewable Energy Prize" category • ACS Award in Inorganic Chemistry 2016 • American Physical Society 2016 James C. -
Counterclaim Defendant, Case No
UNITED STATES DISTRICT COURT EASTERN DISTRICT OF MISSOURI EASTERN DIVISION NESTLÉ PURINA PETCARE COMPANY, Plaintiff/ Counterclaim Defendant, Case No. 4:14-cv-859-RWS v. BLUE BUFFALO COMPANY LTD., Defendant/ Counterclaim Plaintiff. DECLARATION OF VINAYAK P. DRAVID, PH.D. I have been retained by Blue Buffalo Company Ltd. (“Blue Buffalo”) and have been asked to provide a preliminary opinion about the scientific adequacy and reliability of the conclusions set forth in the Expert Report of James V. Makowski dated July 23, 2014 (PUR_000207-52), (“Makowski Report”). In his Report, Dr. Makowski, purports to reach definitive quantitative conclusions about the compositions of various Blue Buffalo products based solely on visual observations of the products using rudimentary optical microscopy. Briefly, Dr. Makowski obtained various product samples directly from Nestlé Purina. Dr. Makowski then examined the processed samples under a low-power light microscope, with very limited capabilities. Dr. Makowski purported to identify ingredients based solely on a subjective, visual comparison of what he observed to “a reference library of known ingredients” – though his Report fails to identify the reference library and validate its utility. Dr. Makowski made no effort to document what features he saw that led to a particular identification (save for four low quality, scale-less photographs, three of which were from a single sample). In other words, he apparently made these identifications based on 7271442v.1 gut feeling. Similarly, Dr. Makowski purported to quantify the amount of ingredients he identified through a “visual estimate,” though his Report and supporting laboratory notebook fail to set forth any methodology for arriving at such numbers. -
© Copyright 2017 Sarah M. Vorpahl
© Copyright 2017 Sarah M. Vorpahl Correlating nanoscale optoelectronic and mechanical properties of solution processable thin film photovoltaic materials using scanning probe microscopy Sarah Marie Vorpahl A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: David Ginger, Chair Brandi Cossairt Xiaosong Li Program Authorized to Offer Degree: Chemistry University of Washington Abstract Correlating nanoscale optoelectronic and mechanical properties of solution processable thin film photovoltaic materials using scanning probe microscopy Sarah Marie Vorpahl Chair of the Supervisory Committee: Professor David S. Ginger Chemistry Solution processable materials present a competitive alternative to traditional silicon solar cells based on inexpensive processing and flexible form factors. Several competing technologies have entered the market in the past few years, including cadmium telluride and copper, indium, gallium, sulfur (CIGS) alloys. In addition to this nascent commercialized product, several emerging technologies also offer promising alternatives. Copper, zinc, tin, sulfur (CZTS) kesterite materials offers an earth abundant option, moving away from more price volatile minerals such as the indium used in CIGS. Hybrid perovskites (HPs) have been revealed as one of the most exciting new solution processable materials, with efficiency improving exponentially in just the past several years. This dissertation explores the underlying electrical -
The 2019 Materials by Design Roadmap
Journal of Physics D: Applied Physics TOPICAL REVIEW • OPEN ACCESS The 2019 materials by design roadmap To cite this article: Kirstin Alberi et al 2019 J. Phys. D: Appl. Phys. 52 013001 View the article online for updates and enhancements. This content was downloaded from IP address 141.14.139.44 on 14/12/2018 at 12:25 IOP Journal of Physics D: Applied Physics Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. J. Phys. D: Appl. Phys. 52 (2019) 013001 (48pp) https://doi.org/10.1088/1361-6463/aad926 52 Topical Review 2019 The 2019 materials by design roadmap © 2018 IOP Publishing Ltd Kirstin Alberi1 , Marco Buongiorno Nardelli2, Andriy Zakutayev1 , JPAPBE Lubos Mitas3, Stefano Curtarolo4,5, Anubhav Jain6, Marco Fornari7 , Nicola Marzari8, Ichiro Takeuchi9, Martin L Green10, Mercouri Kanatzidis11, 12 13 14 1 013001 Mike F Toney , Sergiy Butenko , Bryce Meredig , Stephan Lany , Ursula Kattner15, Albert Davydov15, Eric S Toberer16, Vladan Stevanovic16, Aron Walsh17,18 , Nam-Gyu Park19, Alán Aspuru-Guzik20,21 , K Alberi et al Daniel P Tabor20 , Jenny Nelson22, James Murphy23, Anant Setlur23, John Gregoire24, Hong Li25, Ruijuan Xiao25, Alfred Ludwig26 , Lane W Martin27,28 , Andrew M Rappe29, Su-Huai Wei30 and John Perkins1 1 National Renewable Energy Laboratory, Golden, CO 80401, United States of America Printed in the UK 2 University of North Texas, Denton, TX, United States of America 3 North Carolina State University, Raleigh, NC, United States of America 4 Duke University, Durham, NC, United States of America JPD 5 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 6 Energy Storage and Distributed Resources Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America 10.1088/1361-6463/aad926 7 Department of Physics, Central Michigan University, Mt. -
KARUNADASA CV.Pdf
HEMAMALA I. KARUNADASA Department of Chemistry Email: [email protected] Stanford University 333 Campus Drive Website: http://www.stanford.edu/group/karunadasalab Stanford, CA 94305 Professional Appointments Stanford University, Assistant Professor of Chemistry, 2012 – 2019 Stanford University, Associate Professor of Chemistry, from Sep 2019 Stanford University, Junior Faculty Fellow, Precourt Institute for Energy, 2014 – 2021 SLAC National Accelerator Laboratory, Faculty Scientist, from July 2020. Stanford University, Senior Faculty Fellow, Precourt Institute for Energy, from June 2021 Academic Background California Institute of Technology, Post-doctoral researcher, 2010 – 2012 Advisor: Prof. Harry B. Gray. Research: Molecular catalysts for hydrocarbon oxidation University of California, Berkeley and Lawrence Berkeley National Laboratory, Post-doctoral researcher, 2009 – 2010 Advisors: Profs. Christopher J. Chang and Jeffrey R. Long. Research: Molecular catalysts for generating hydrogen from water University of California, Berkeley, Ph.D. in Inorganic Chemistry, 2009 Advisor: Prof. Jeffrey R. Long. Thesis: Heavy atom building units for magnetic materials and molecular catalysts for generating hydrogen from water Princeton University, A.B. in Chemistry (high honors) and Certificate in Materials Science and Engineering 2003 Advisor: Prof. Robert J. Cava. Thesis: Geometrically frustrated magnets Awards 1. Undergraduate Thesis Award in Inorganic Chemistry, Princeton University, 2003 2. Tyco Electronics, Graduate Fellowship, 2006 3. Outstanding Graduate Student Instructor Award, University of California, Berkeley, 2006 4. BP Post-Doctoral Fellowship, California Institute of Technology, 2011 5. Gabilan Junior Faculty Fellow, Stanford University, 2012 6. Thieme Chemistry Journal Award, 2013 7. National Science Foundation CAREER Award, 2014 8. Rising Star Award, International Conference on Coordination Chemistry (ICCC41), Singapore, 2014 9. Alfred P. Sloan Research Fellowship, 2015 10. -
July 2015 IEEE EDS Newsletter
JULY 2015 VOL. 22, NO. 3 ISSN: 1074 1879 EDITOR-IN-CHIEF: M.K. RADHAKRISHNAN TABLE OF CONTENTS TECHNICAL BRIEFS . 1 T ECHNICAL B RIEFS • Reliability Trends of Nano-scaled CMOS Devices • Report on 2015 IEEE International Reliability Physics Symposium • Wide Bandgap Semiconductors, They’re Special RELIABILITY TRENDS OF UPCOMING TECHNICAL MEETINGS . 10 • 2015 IEEE International Integrated Reliability NANO-SCALED CMOS DEVICES Workshop (IIRW) • 2015 IEEE Compound Semiconductor IC GUIDO GROESENEKEN Symposium (CSICS) IMEC AND KU LEUVEN, BELGIUM • 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) SOCIETY NEWS . 13 With the continuous downscaling of CMOS technologies, reliability • EDS Vision and Mission Statements is more and more becoming a major bottleneck and this for several • EDS President’s Message reasons. First of all the electric fields and current and power densi- • Message from EDS Vice President of Regions/ Chapters ties have increased continuously and are now reaching the maxi- • Message from Newsletter Editor-in-Chief mum values that can be allowed for reliable operation. At the same • EDS Governance Meeting Summary time an impressive effort is taking place introducing new materi- • Call for EDS Board of Governors Nominations • EDS Board of Governors Election Process als and novel device architectures to maintain the effective perfor- • IEEE Election Reminder mance scaling. New materials like high k dielectrics and metal gates • EDS Compound Semiconductor Devices and for both logic and memory technologies and novel device concepts Circuits Technical Committee Report • 2015 William R. Cherry Award Winner such as Multiple gate FET’s have already been introduced, while Ge • 42nd Photovoltaic Specialists Conference (PVSC) or III-V materials for high mobility devices are under investigation. -
The London School of Economics and Political Science
The London School of Economics and Political Science Modelling High Superconductivity: A Philosophical In Experiment a Maria Elena Di Bucchianico A thesis submitted to the Department of Philosophy, Logic and Scientific Method of the London School of Economics for the degree of Doctor of Philosophy, London, September 2009 UMI Number: U615704 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U615704 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 -rUr cr .c f ^IC7 Library &*shLto^yDfPo,|llcal an*eara"K*"K» I2-IS6H Declaration I certify that the thesis I have presented for examination for the PhD degree of the London School of Economics and Political Science is solely my own work other than where I have clearly indicated that it is the work of others (in which case the extent of any work carried out jointly by me and any other person is clearly identified in it). The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. This thesis may not be reproduced without the prior written consent of the author. -
Researchers Demonstrate First Stable Semiconductor Neutron Detector 15 January 2020
Researchers demonstrate first stable semiconductor neutron detector 15 January 2020 arrays of crystals. The study will be published in the Jan. 16 issue of the journal Nature. "People have imagined semiconductor neutron detectors for a long time," said Northwestern's Mercouri Kanatzidis, who led the research. "The idea was there, but no one had the right material to do it." Kanatzidis is the Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences. He has a joint appointment with Argonne. A prototype of a working, pocket-sized neutron detector made with a high lithium-containing material. Credit: Northwestern University/Argonne National Laboratory Homeland Security might soon have a new tool to add to its arsenal. Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors. With the ability to sense smuggled nuclear New material (lithium-indium-phosphorous-selenium) is materials, highly efficient neutron detectors are lithium-rich, making the semiconductor neutron detector critical for national security. Currently, there are possible. Credit: Northwestern University/Argonne two classes of detectors which either use helium National Laboratory gas or flashes of light. These detectors are very large—sometimes the size of a wall. Northwestern and Argonne's material introduces a When heavy elements, such as uranium and third class: a semiconductor that can absorb plutonium, decay, their atoms eject neutrons from neutrons and generate electrical signals that can their nuclei. Most neutron detectors are so-called be easily measured. The semiconductor-based scintillators that work by sensing ejected neutrons detector is also highly efficient and stable. -
Superconductivity Record Breaks Under Pressure
NATURE | NEWS Superconductivity record breaks under pressure Everyday compound reported to conduct electricity without resistance at a record-high temperature, outstripping more exotic materials. Edwin Cartlidge 12 December 2014 Phil Degginger/Alamy Superconductors made of ceramics called cuprates have until now held the record for the warmest temperature at which they can operate, but a new class of materials could change that. For nearly 30 years, the search for a room-temperature superconductor has focused on exotic materials known as cuprates, which can carry currents without losing energy as heat at temperatures up to 164 Kelvin, or –109 ˚C. But scientists say that they have trumped that record using the common molecule hydrogen sulphide1. When they subjected a tiny sample of that material to pressures close to those inside Earth’s core, the researchers say that it was superconductive at 190 K (–83 ˚C). "If the result is reproduced, it will be quite shocking," says Robert Cava, a solid-state chemist at Princeton University in New Jersey. "It would be a historic discovery." According to the established theory of superconductivity — dubbed BCS theory after the surnames of its creators, John Bardeen, Leon Cooper and Robert Schrieffer — vibrations in a crystal's atoms can lead electrons to form ‘Cooper pairs’ that can flow through the crystal without resistance. BCS theory was developed in the 1950s, but most physicists believe that it cannot explain superconductivity in cuprates, which was discovered in 1986, or in iron pnictides2, found in 2006. Scientists hope that BCS theory can guide the search for other kinds of high-temperature superconductors, particularly in materials containing light elements such as hydrogen.