Fates and Potential Impacts of Plastic in Aquatic Environments

Total Page:16

File Type:pdf, Size:1020Kb

Fates and Potential Impacts of Plastic in Aquatic Environments Physical, chemical and biological processes and fates ofpetroleum-based plastic and bioplastic pollutants in aquatic environments A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Taylor D. Gundry BSc (Environmental Science), RMIT University; BSc (Honours) (Applied Science), RMIT University School of Science College of Science, Engineering and Health Royal Melbourne Institute of Technology University October, 2018 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Taylor Gundry 19/10/2018 II Acknowledgements First I would like to express my deep gratitude to my senior supervisor Professor Mark Osborn for his continuous guidance, encouragement and support throughout my PhD journey. Professor Osborn has provided me with the resources to pursue this PhD into plastic pollution and has provided extensive detailed feedback on my writing and for that I am extremely thankful. I also would like to thank my associate supervisor, Dr. Bradley Clarke and Dr. Slobodanka Stojkovic for their guidance in analytical organic chemistry and high-throughput DNA sequencing. The current and past members of my two research groups need to be recognised for their moral and technical support; as well to all the members of the Ball and Bott laboratory groups. A special thank you needs to go to Thomas McGrath and Phoebe Lewis for their help; I would not have been able to complete the analytical chemistry component of my studies without them truly. Thank you to Adam Truskewycz and Adam Kolobaric for being great lab partners and housemates while it lasted. I would also like to thank Joe Stewart for turning me away from pursuing a career in mathematics or history and into science. My parents Adele and Dale and my sister Chelsea need to be thanked for their continued encouragement and support.Finally, my lovely wife Sylwia needs to be acknowledged. This PhD journey has been travelled by two people; thank you for your encouragement when I was low and needed it that most. III Table of Contents Declaration ................................................................................................................................ II Acknowledgements ................................................................................................................. III Table of Contents ..................................................................................................................... IV List of Figures .......................................................................................................................... IX List of Tables ....................................................................................................................... XVII List of Abbreviations ........................................................................................................... XXII Executive Summary ........................................................................................................... XXIV Conference Proceedings ................................................................................................. XXVIII 1 Chapter 1: Introduction ...................................................................................................... 1 1.1 Plastic production and applications .......................................................................... 1 1.2 Production and life-cycle assessments of bioplastics ............................................... 4 1.3 Plastic pollution in aquatic environments ................................................................. 6 1.4 Plastic pollution distribution in the environment ...................................................... 6 1.4.1 Sources and pathways of plastic into aquatic environments ......................... 6 1.4.2 Distribution of plastic in freshwater systems ................................................ 7 1.4.3 Distribution and abundance of plastic in the marine environment ................ 9 1.5 Degradation pathways of plastic debris .................................................................. 14 1.5.1 Abiotic degradation pathways of plastic ..................................................... 14 1.5.2 Biological degradation pathways of plastic ................................................ 16 1.6 Ecological impacts of plastic .................................................................................. 22 IV 1.7 Chemical pollutants associated with plastic debris ................................................. 23 1.7.1 Persistent organic pollutants (POPs) associated with plastic debris ........... 24 1.7.2 Plastic additives of concern ......................................................................... 28 1.8 Microbial biofilms on plastic .................................................................................. 32 1.8.1 The role of microbial biofilms in key environmental functions .................. 32 1.8.2 Microbial biofilms associated with plastic debris ....................................... 32 1.9 Research Aims and Objectives ............................................................................... 34 2 Chapter 2: Experimental Design and sampling scheme .................................................. 35 2.1 Experimental summary ........................................................................................... 35 2.2 Site descriptions ...................................................................................................... 35 2.3 Sample preparation ................................................................................................. 38 2.4 Sample collection and labelling regime .................................................................. 40 3 Chapter 3: Variation in physical and chemical properties of polypropylene and polylactic acid plastics following exposure in natural aquatic conditions ............................................... 42 3.1 Introduction ............................................................................................................. 42 3.2 Methods ................................................................................................................... 52 3.2.1 Plastic surface hydrophobicity analysis via water contact angle (WCA) measurements ............................................................................................................. 52 3.2.2 Plastic Universal Tensile Strength analysis ................................................ 54 3.2.3 Chemical structure and crystallinity analysis of polymer substrates .......... 55 3.2.3.1 Fourier transform infrared (FTIR) spectroscopy .................................... 55 3.2.3.2 Polymer crystallinity analysis ................................................................. 55 3.2.4 Scanning Electron Microscopy (SEM) imaging ......................................... 55 3.2.5 Data analysis ............................................................................................... 56 3.3 Results ..................................................................................................................... 57 V 3.3.1 Variation in water contact angles (WCA) of polymer substrates ................ 57 3.3.2 Variation in tensile strength of polymer substrates ..................................... 59 3.3.3 Chemical structure and crystallinity analysis of polymer substrates .......... 62 3.3.3.1 Crystallinity of polymer substrates ......................................................... 62 3.3.3.2 Fourier transform infrared (FTIR) spectroscopy of polymer substrates . 62 3.3.4 Biofilm formation on polymer substrates after exposure in the Yarra River65 3.4 Discussion ............................................................................................................... 69 4 Chapter 4: Accumulation of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) on polypropylene and polylactic acid substrates in aquatic environments ............................................................................................................... 73 4.1 Introduction ............................................................................................................. 73 4.2 Methods ................................................................................................................... 83 4.2.1 Chemical standards and materials ............................................................... 83 4.2.2 Selective Pressurised Liquid Extraction (S-PLE) ....................................... 84 4.2.3 Dual vortex and sonication extraction method of PBDEs and NBFRs from PLA substrates ........................................................................................................... 85 4.2.4 Combined method for transferring polypropylene, polylactic acid and glass extracts into gas chromatrography vials ..................................................................... 86
Recommended publications
  • Identification by 16S Ribosomal RNA Gene Sequencing of an Enterobacteriaceae Species from a Bone Marrow Transplant Recipient
    J Clin Pathol: Mol Pathol 2000;53:211–215 211 Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from Mol Path: first published as 10.1136/mp.53.4.211 on 1 August 2000. Downloaded from a bone marrow transplant recipient PCYWoo,PKLLeung, K W Leung, K Y Yuen Abstract with biochemical characteristics that do not fit Aims—To ascertain the clinical relevance into patterns of any known genus and species. of a strain of Enterobacteriaceae isolated Since the discovery of the polymerase chain from the stool of a bone marrow trans- reaction (PCR) and DNA sequencing, the plant recipient with diarrhoea. The isolate genomes of some bacteria have been se- could not be identified to the genus level quenced completely.1 A comparison of the by conventional phenotypic methods and genomic sequences of bacterial species showed required 16S ribosomal RNA (rRNA) gene that the 16S ribosomal RNA (rRNA) gene is sequencing for full identification. highly conserved within a species and among Methods—The isolate was investigated species of the same genus, and hence can be phenotypically by standard biochemical used as the new gold standard for the methods using conventional biochemical speciation of bacteria. Using this new standard, tests and two commercially available sys- phylogenetic trees based on base diVerences tems, the Vitek (GNI+) and API (20E) sys- between species are constructed; bacteria are tems. Genotypically, the 16S bacterial classified and re-classified into new genera;23 rRNA gene was amplified by the polymer- and classifications of non-cultivable micro- ase chain reaction (PCR) and sequenced.
    [Show full text]
  • BD-CS-057, REV 0 | AUGUST 2017 | Page 1
    EXPLIFY RESPIRATORY PATHOGENS BY NEXT GENERATION SEQUENCING Limitations Negative results do not rule out viral, bacterial, or fungal infections. Targeted, PCR-based tests are generally more sensitive and are preferred when specific pathogens are suspected, especially for DNA viruses (Adenovirus, CMV, HHV6, HSV, and VZV), mycobacteria, and fungi. The analytical sensitivity of this test depends on the cellularity of the sample and the concentration of all microbes present. Analytical sensitivity is assessed using Internal Controls that are added to each sample. Sequencing data for Internal Controls is quantified. Samples with Internal Control values below the validated minimum may have reduced analytical sensitivity or contain inhibitors and are reported as ‘Reduced Analytical Sensitivity’. Additional respiratory pathogens to those reported cannot be excluded in samples with ‘Reduced Analytical Sensitivity’. Due to the complexity of next generation sequencing methodologies, there may be a risk of false-positive results. Contamination with organisms from the upper respiratory tract during specimen collection can also occur. The detection of viral, bacterial, and fungal nucleic acid does not imply organisms causing invasive infection. Results from this test need to be interpreted in conjunction with the clinical history, results of other laboratory tests, epidemiologic information, and other available data. Confirmation of positive results by an alternate method may be indicated in select cases. Validated Organisms BACTERIA Achromobacter
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Abstract Pultorak, Elizabeth Lauren
    ABSTRACT PULTORAK, ELIZABETH LAUREN. The Epidemiology of Lyme Disease and Bartonellosis in Humans and Animals. (Under the direction of Edward B. Breitschwerdt). The expansion of vector borne diseases in humans, a variety of mammalian hosts, and arthropod vectors draws attention to the need for enhanced diagnostic techniques for documenting infection in hosts, effective vector control, and treatment of individuals with associated diseases. Through improved diagnosis of vector-borne disease in both humans and animals, epidemiological studies to elucidate clinical associations or spatio-temporal relationships can be assessed. Veterinarians, through the use of the C6 peptide in the SNAP DX test kit, may be able to evaluate the changing epidemiology of borreliosis through their canine population. We developed a survey to evaluate the practices and perceptions of veterinarians in North Carolina regarding borreliosis in dogs across different geographic regions of the state. We found that veterinarians’ perception of the risk of borreliosis in North Carolina was consistent with recent scientific reports pertaining to geographic expansion of borreliosis in the state. Veterinarians should promote routine screening of dogs for Borrelia burgdorferi exposure as a simple, inexpensive form of surveillance in this transitional geographic region. We next conducted two separate studies to evaluate Bartonella spp. bacteremia or presence of antibodies against B. henselae, B. koehlerae, or B. vinsonii subsp. berkhoffii in 296 patients examined by a rheumatologist and 192 patients with animal exposure (100%) and recent animal bites and scratches (88.0%). Among 296 patients examined by a rheumatologist, prevalence of antibodies (185 [62%]) and Bartonella spp. bacteremia (122 [41.1%]) was high.
    [Show full text]
  • Beating Chronic LYME
    Section 1 Beating Chronic LYME Dr. Kevin Conners Fellowship in Integrative Cancer Therapy Fellowship in Anti-Aging, Regenerative, and Functional Medicine American Academy of Anti-Aging Medicine www.ConnersClinic.com From left to right: Larvae, Nymph, Female, Male Tick Tick in Nymph stage is the size of a poppy seed. Beating Chronic LYME Forward I used to live in the woods. My wife and four children at the time purchased 280 acres in Wisconsin and basically lived off the land. We grew most of our own food, were ‘off grid’ as we produced our own electricity through solar panels, and had to pump our water by hand. It was certainly a different way of life that prepared us for missionary work in Mexico. It was 1997 and at the time I had begun hearing about Lyme disease being a tick- born disorder. I had never seen a deer tick before moving to our ‘little house in the big woods’ but one thing was for certain – we had plenty of deer. They were as populous as the mosquitoes. To make a long story short, both my oldest daughter and I had contracted Lyme during our three year stay. I experienced the violent sickness of acute Lyme as well as a beautiful bulls-eye rash that made the diagnosis easy. I took just 3 days of antibiotics and since that was just the second time that I had ever taken a prescription medication in my life, they eradicated the disease effectively. My daughter on the other hand wasn’t so fortunate. She never had an acute illness and we never saw any rash therefore we didn’t catch the disease until it had advanced to Chronic Lyme Disease (CLD).
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Downloads/Bin/Fastq Quality Filter -Q20 -P90 -Q33
    Biological Reduction of Selenium Oxyanions in the Presence of Nitrate anions using Anaerobic Microbes by Gaurav Subedi B.Sc., Jacobs University Bremen, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2016 © Gaurav Subedi, 2016 Abstract Biological selenium reduction has emerged as a viable solution for the removal of toxic selenium from the environment. However, the presence of nitrate hinders selenium reduction by acting as a competitive electron acceptor. The present thesis investigated the use of local mine-impacted sediment as an inoculum for selenium reduction and studied the affect of nitrate on the removal of selenium. Sediment samples, impacted by mining activities, were collected from two vastly different sites of the Elk River Valley. These sediments namely; Goddard Marsh and Mature Tailing Coal, were enriched for selenium reducing bacterial consortium under high selenium and varying nitrate concentrations to put additional selection pressure. Ultimately, two cultures from Goddard Marsh enriched under low and high nitrate condition as well as one culture from Mature Tailing Coal enriched under moderate nitrate condition were used to access the affect of nitrate on selenium reduction using central composite design matrix. The extent of Se reduction was highest in the Goddard Marsh enrichment with no nitrate while enrichment with moderate and high nitrate reduced selenium poorly. ANOVA results from the CCD experiment in Goddard Marsh enrichment with no nitrate indicated no affect of nitrate in Se reduction. Two primer sets targeting the selenate redutase (serA) from Thauera selenatis and nitrite reductase (nirK) from denitrifying population were used to quantify the population of selenium reducing and denitrifying population in the CCD experiment.
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • Download/Issues/Mining/Reference Guide to Treatment Technologi Es for MIW.Pdf
    Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water by Frank Nkansah - Boadu BSc., Kwame Nkrumah University of Science and Technology, 2003 MASc., The University of British Columbia, 2013 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2019 © Frank Nkansah - Boadu, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Removal of Soluble Selenium in the Presence of Nitrate from Coal Mining-Influenced Water submitted by Frank Nkansah-Boadu in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemical and Biological Engineering Examining Committee: Susan Baldwin, Chemical and Biological Engineering Supervisor Vikramaditya Yadav, Chemical and Biological Engineering Supervisory Committee Member Troy Vassos, Adjunct Professor, Civil Engineering Supervisory Committee Member Anthony Lau, Chemical and Biological Engineering University Examiner Scott Dunbar, Mining Engineering University Examiner ii Abstract Biological treatment to remove dissolved selenium from mining-influenced water (MIW) is inhibited by co-contaminants, especially nitrate. It was hypothesized that selenium reducing microorganisms can be obtained from native mine bacteria at sites affected by MIW due to the selection pressure from elevated selenium concentrations at those sites. Enrichment of these microorganisms and testing of their capacity to remove dissolved selenium from actual coal MIW was the objective of this dissertation. Fifteen sediments were collected from eleven different vegetated or non-vegetated seepage collection ponds and one non-impacted natural wetland.
    [Show full text]
  • Detection and Partial Molecular Characterization of Rickettsia and Bartonella from Southern African Bat Species
    Detection and partial molecular characterization of Rickettsia and Bartonella from southern African bat species by Tjale Mabotse Augustine (29685690) Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE (MICROBIOLOGY) in the Department of Microbiology and Plant Pathology Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria, South Africa Supervisor: Dr Wanda Markotter Co-supervisors: Prof Louis H. Nel Dr Jacqueline Weyer May, 2012 I declare that the thesis, which I hereby submit for the degree MSc (Microbiology) at the University of Pretoria, South Africa, is my own work and has not been submitted by me for a degree at another university ________________________________ Tjale Mabotse Augustine i Acknowledgements I would like send my sincere gratitude to the following people: Dr Wanda Markotter (University of Pretoria), Dr Jacqueline Weyer (National Institute for Communicable Diseases-National Health Laboratory Service) and Prof Louis H Nel (University of Pretoria) for their supervision and guidance during the project. Dr Jacqueline Weyer (Centre for Zoonotic and Emerging diseases (Previously Special Pathogens Unit), National Institute for Communicable Diseases (National Heath Laboratory Service), for providing the positive control DNA for Rickettsia and Dr Jenny Rossouw (Special Bacterial Pathogens Reference Unit, National Institute for Communicable Diseases-National Health Laboratory Service), for providing the positive control DNA for Bartonella. Dr Teresa Kearney (Ditsong Museum of Natural Science), Gauteng and Northern Region Bat Interest Group, Kwa-Zulu Natal Bat Interest Group, Prof Ara Monadjem (University of Swaziland), Werner Marias (University of Johannesburg), Dr Francois du Rand (University of Johannesburg) and Prof David Jacobs (University of Cape Town) for collection of blood samples.
    [Show full text]
  • Decision Summary
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K181324 B. Purpose for Submission: To obtain a substantial equivalence determination for the FilmArray Pneumonia Panel plus C. Measurands: Acinetobacter calcoaceticus-baumannii complex, Enterobacter cloacae complex, Escherichia coli, Haemophilus influenzae, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae group, Moraxella catarrhalis, Proteus spp., Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, Chlamydia pneumoniae, Legionella pneumophila, Mycoplasma pneumoniae, Adenovirus, Coronavirus, Human Metapneumovirus, Human Rhinovirus/Enterovirus, Influenza A, Influenza B, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Parainfluenza Virus, Respiratory Syncytial Virus, CTX-M, IMP, KPC, NDM, OXA-48-like, VIM, mecA/C and MREJ. D. Type of Test: Qualitative and quantitative nucleic acid amplification assay E. Applicant: BioFire Diagnostics, LLC F. Proprietary and Established Names: FilmArray Pneumonia Panel plus G. Regulatory Information: 1. Regulation section: 21 CFR 866.4001 – MERS-CoV and common respiratory pathogens multiplex nucleic acid detection system 2. Classification: Class II (Special Controls) 3. Product code: PZF 4. Panel: 83-Microbiology H. Indications for use: 1. Indications for use(s): The FilmArray Pneumonia Panel plus is a multiplexed nucleic acid test intended for use with FilmArray, FilmArray 2.0, or FilmArray Torch systems for the simultaneous detection and identification of nucleic acids from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and multiple respiratory viral and bacterial nucleic acids, as well as select antimicrobial resistance genes, in sputum-like specimens (induced or expectorated sputum, or endotracheal aspirates) or bronchoalveolar lavage (BAL)-like specimens (BAL or mini-BAL) obtained from individuals meeting MERS-CoV clinical and/or epidemiological criteria.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]