The Human Microbiome During Bacterial Vaginosis

Total Page:16

File Type:pdf, Size:1020Kb

The Human Microbiome During Bacterial Vaginosis crossmark The Human Microbiome during Bacterial Vaginosis Andrew B. Onderdonk,a,c Mary L. Delaney,a,c Raina N. Fichorovab,c Department of Pathologya and Department of Obstetrics, Gynecology and Reproductive Biology,b Brigham and Women’s Hospital, and Harvard Medical School,c Boston, Massachusetts, USA SUMMARY ..................................................................................................................................................223 INTRODUCTION ............................................................................................................................................223 Definitions of BV..........................................................................................................................................224 Epidemiological Characteristics of BV ....................................................................................................................225 Definitions of BV Based on Clinical and Microscopic Criteria .............................................................................................225 Definitions Determined by Using Culture-Based Microbiological Criteria ................................................................................226 Non-Culture-Based Methods for Diagnosis of BV.........................................................................................................226 Downloaded from INDIVIDUAL MICROBIAL SPECIES AS POSSIBLE MEDIATORS OF BV AND HOST IMMUNITY..............................................................227 Gardnerella vaginalis ......................................................................................................................................227 Atopobium vaginae .......................................................................................................................................229 Prevotella and Porphyromonas............................................................................................................................229 Anaerobic Cocci ..........................................................................................................................................230 Sneathia (Leptotrichia)....................................................................................................................................230 Mobiluncus ...............................................................................................................................................231 Mycoplasma and Ureaplasma ............................................................................................................................231 BVAB1 to BVAB3 ..........................................................................................................................................232 LINKING IMMUNITY TO BV AND MICROBIAL GROUP PATTERNS .........................................................................................232 http://cmr.asm.org/ Innate Immunity and Cytokines in BV ....................................................................................................................232 Inflammatory Changes and Preterm Birth ................................................................................................................232 HIV Infection and Vaginal Immunity......................................................................................................................233 Host Factors Associated with Vaginal Immune Function.................................................................................................233 CONCLUSION...............................................................................................................................................233 REFERENCES ................................................................................................................................................234 AUTHOR BIOS ..............................................................................................................................................238 on October 6, 2017 by guest SUMMARY cosal inflammation, including vaginal discharge, itching, and Bacterial vaginosis (BV) is the most commonly reported microbi- burning, but was associated with a lack of leukocytic exudate, ological syndrome among women of childbearing age. BV is char- redness, and swelling; therefore, to be distinguished from classic acterized by a shift in the vaginal flora from the dominant Lacto- vaginitis, it was termed vaginosis. This syndrome has been associ- bacillus to a polymicrobial flora. BV has been associated with a ated with a wide array of health issues over the ensuing decades, wide array of health issues, including preterm births, pelvic in- including preterm births, pelvic inflammatory disease, increased flammatory disease, increased susceptibility to HIV infection, and susceptibility to HIV infection, and other chronic health prob- other chronic health problems. A number of potential microbial lems. Taken together, these complications represent an extraordi- pathogens, singly and in combinations, have been implicated narily common complaint among women of childbearing age, in the disease process. The list of possible agents continues to with preterm birth alone affecting over 10% of all pregnancies (1), expand and includes members of a number of genera, includ- and an expensive medical issue for both the women affected and ing Gardnerella, Atopobium, Prevotella, Peptostreptococcus, Mobi- babies born prematurely to mothers with BV. According to a re- luncus, Sneathia, Leptotrichia, Mycoplasma, and BV-associated port from the Institute of Medicine, preterm birth in the United bacterium 1 (BVAB1) to BVAB3. Efforts to characterize BV using States alone cost at least $26.2 billion in 2005, or an average of epidemiological, microscopic, microbiological culture, and se- $51,600 per infant (2). A number of potential microbial patho- quenced-based methods have all failed to reveal an etiology that gens, singly and in combinations, have been implicated in the can be consistently documented in all women with BV. A careful disease process. The list of possible agents continues to expand analysis of the available data suggests that what we term BV is, in and includes members of a number of genera, including Gard- fact, a set of common clinical signs and symptoms that can be nerella, Atopobium, Prevotella, Bacteroides, Peptostreptococcus, provoked by a plethora of bacterial species with proinflammatory characteristics, coupled to an immune response driven by vari- ability in host immune function. Published 10 February 2016 Citation Onderdonk AB, Delaney ML, Fichorova RN. 2016. The human microbiome INTRODUCTION during bacterial vaginosis. Clin Microbiol Rev 29:223–238. doi:10.1128/CMR.00075-15. he clinical syndrome that is currently known as bacterial vagi- Address correspondence to Andrew B. Onderdonk, [email protected]. Tnosis (BV) has been studied extensively for over 60 years. The Copyright © 2016, American Society for Microbiology. All Rights Reserved. originally described syndrome included various symptoms of mu- April 2016 Volume 29 Number 2 Clinical Microbiology Reviews cmr.asm.org 223 Onderdonk et al. facultative and obligately anaerobic organisms with pathogenic potential that may be transiently isolated from the vaginal vault. Culture-based studies have shown that predictable quantitative and qualitative changes in the microbiome occur during the men- strual cycle in overtly healthy women monitored for multiple menstrual cycles, regardless of the type of catamenial protection used (3–6). During menstrual flow, the pH rises, and the numbers of lactobacilli decrease, with a concomitant increase in the num- bers of other facultative and anaerobic species normally present as part of the vaginal microbiome. Following the cessation of men- strual flow, the pH decreases, and the numbers of lactobacilli in- FIG 1 Schematic framework for syndromatic bacterial vaginosis (BV) presen- crease, with a concomitant reduction in the numbers of other tation. The resident microbiome is shaped by host genetics, and in turn, the facultative and obligately anaerobic organisms present. Longitu- microbiome regulates host gene expression, while both vaginal and systemic dinal studies have shown that these quantitative changes in the exposures influence the vaginal microbiome-human genome encounter. The microbiome during the menstrual cycle are consistent from cycle result of these interactions determines symptom severity and disparities within Downloaded from the syndrome known as BV. to cycle for the same subjects as well as for all overtly healthy menarchal women, although there is considerable qualitative sub- ject-to-subject variability in the composition of the vaginal bacte- Mobiluncus, Sneathia, Leptotrichia, Mycoplasma, and recently ge- rial community. Qualitative studies using conventional culture netically characterized organisms of the order Clostridiales (BV- methods have characterized over 100 separate phenotypes that associated bacterium 1 [BVAB1] to BVAB3). A great deal of re- can be isolated from the vaginal microbiome, with some pheno- search has resulted in many excellent reviews of BV describing types always being present in high numbers when assessed longi- both the clinical manifestations and the potentially associated mi- tudinally and some phenotypes being present only sporadically, crobiological agents, with most pointing toward a complex mi- while other phenotypes are consistently present in low
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • The Power of Partnership » AP2.Com MOLECULAR TEST MENU
    The Power of Partnership » AP2.com MOLECULAR TEST MENU AP2 provides the most comprehensive Women’s Health Care molecular menu. AP2 can perform most of these tests from our scientifically developed UniSwabTM as well as from the liquid based platforms SurePathTM and ThinPrep®. The following is a comprehensive list of molecular tests available from AP2. If one molecular test is ordered upfront, add-on testing is available for 45 days on UniSwabTM, ThinPrep® and SurePathTM. If no molecular test is ordered up front, add-on testing is available for 28 days on UniSwabTM and ThinPrep®. HPV and CT/NG testing can be added on to ThinPrep® specimens prior to 28 days after collection. UniSwab ThinPrep SurePath 70142 Atopobium vaginae 70142 Atopobium vaginae 70142 Atopobium vaginae 60135 Bacterial vaginosis panel 60135 Bacterial vaginosis panel 60135 Bacterial vaginosis panel (Mobiluncus mulieris and M. curtisii, Gardnerella (Mobiluncus mulieris and M. curtisii, Gardnerella (Mobiluncus mulieris and M. curtisii, Gardnerella vaginalis, Atopobium vaginae, Mycoplasma vaginalis, Atopobium vaginae, Mycoplasma vaginalis, Atopobium vaginae, Mycoplasma genitalium and hominis) genitalium and hominis) genitalium and hominis) 70125 Bacteroides fragilis 70125 Bacteroides fragilis 70125 Bacteroides fragilis 70164 BVAB2 70164 BVAB2 70164 BVAB2 70551 Candida albicans 70551 Candida albicans 70551 Candida albicans 70559 Candida glabrata 70559 Candida glabrata 70559 Candida glabrata 70561 Candida kefyr 70561 Candida kefyr 70561 Candida kefyr 70560 Candida krusei 70560
    [Show full text]
  • The Characterization of a Putative Protease Expressed by Sneathia Amnii
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 The Characterization of a Putative Protease Expressed by Sneathia amnii Rana Mehr Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3931 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. CHARACTERIZATION OF A PUTATIVE PROTEASE EXPRESSED BY SNEATHIA AMNII A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University by RANA MEHR B.S., Virginia Commonwealth University 2011 Director: Kimberly Jefferson, Ph.D. Associate Professor, Department of Microbiology and Immunology Virginia Commonwealth University Richmond, Virginia Virginia Commonwealth University Richmond, Virginia July, 2015 Acknowledgements I would first like to express my deepest gratitude to my mentor Dr. Kimberly Jefferson. Her continuous mentorship, trust, and support in academic, scientific, and personal experiences have empowered me to successfully complete my graduate career both academically and scientifically. She has aided my development as an independent scientist which would have not been possible without guidance. I would also like to thank the members of my graduate advisory committee: Dr. Dennis Ohman and Dr. Darrell Peterson. Their advice and direction have allowed me to better understand my project and their invaluable knowledge has made me a better scientist.
    [Show full text]
  • A Genomic Journey Through a Genus of Large DNA Viruses
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14.
    [Show full text]
  • Sneathia Species in a Case of Neonatal Meningitis from Northeast India
    OMCR 20149 (3 pages) doi:10.1093/omcr/omu044 Case Report Sneathia species in a case of neonatal meningitis from Northeast India Utpala Devi1, Reeta Bora2, Jayanta Kumar Das3, Vinita Malik1 and Jagadish Mahanta1,* 1Regional Medical Research Centre, North East Region (ICMR), Dibrugarh, India, 2Neonatology Unit, Assam Medical College & Hospital, Dibrugarh, India and 3Department of Microbiology, Assam Medical College & Hospital, Dibrugarh, India Downloaded from *Correspondence address. Regional Medical Research Centre, NE Region (ICMR), Post Box 105, Dibrugarh 786001, Assam, India. Tel: þ91 373-2381494; Fax: þ91 373-2381748; E-mail: [email protected] Received 19 June 2014; revised 15 August 2014; accepted 21 August 2014 http://omcr.oxfordjournals.org/ Here we report the detection of Sneathia species most closely related to Sneathia sanguine- gens, an infrequently reported bacterium, in the cerebrospinal fluid of a neonate by a culture in- dependent method. Even though on rare occasions, this bacterium was isolated previously from the blood of neonatal bacteraemia cases. To the best of our knowledge there exists no pre- vious report of detection of S. sanguinegens in the cerebrospinal fluid even though recently there has been a report of isolation of closely related species, Leptotrichia amnionii.The neonate recovered following antimicrobial therapy for 21 days. We conclude that uncultivable or difficult- to-cultivate bacteria like Sneathia could be an emerging pathogen for neonatal at Purdue University Libraries ADMN on June 9, 2015 infection. INTRODUCTION following antimicrobial treatment in combination with pipera- cillin and netilmicin for 21 days. Sneathia is an emerging pathogen of the female genital tract having a significant role in obstetrics and gynaecological health [1].
    [Show full text]
  • Actinomyces As Actinomyces Suis Comb
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1992, p. 161-165 Vol. 42, No. 1 0020-7713/92/010161-05$02.00/0 Phylogenetic Evidence for the Transfer of Eubacterium suis to the Genus Actinomyces as Actinomyces suis comb. nov. W. LUDWIG,l* G. KIRCHHOF,l M. WEIZENEGGER,l AND N. WEISS2 Lehrstuhl fur Mikrobiologie, Technische Universitat, 0-8000 Munich, and Deutsche Sammlung von Mikroorganismen und Zellkulturen, 0-3300 Braunschweig, Germany The 16s rRNA primary structures of Eubacterium suis DSM 20639T (T = type strain) and Bijidobacterium bijidum DSM 20456T were determined by sequencing in vitro amplified rDNA. Sequence comparisons indicated that B. bijidum is moderately related to representatives of the genera Actinomyces and Mobiluncus. The closest relative of E. suis is Actinomyces pyogenes. E. suis and A. pyogenes are more closely related phylogenetically to one another than to the other Actinomyces species that have been investigated by using comparative 16s rRNA analysis. Therefore, we propose that E. suis should be transferred to the genus Actinomyces as Actinomyces suis comb. nov. Eubacterium suis Wegienek and Reddy 1982, a commonly MATERIALS AND METHODS occurring swine pathogen (23), was originally isolated by Soltys and Spratling in 1957 (20). The name “Corynebacte- Bacterial strains and culture conditions. B. bifidum DSM rium suis” was proposed for this bacterium because of the 20456T (T = type strain) was cultured anaerobically at 37°C diphtheroid morphology of the anaerobic organism. In 1982 in a medium which contained (per liter of distilled water) 10 in a taxonomic study, Wegienek and Reddy described the g of tryptone, 5 g of meat extract, 5 g of yeast extract, 10 g morphological, cultural, and biochemical characteristics of of glucose, 3 g of K2HP0,, 5 g of NaC1, 10 ml of Tween 80, this organism and proposed the name Eubacterium suis.
    [Show full text]
  • Diversity and Prevalence of ANTAR Rnas Across Actinobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diversity and prevalence of ANTAR RNAs across actinobacteria Dolly Mehta1,2 and Arati Ramesh1,+ 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India 560065. 2SASTRA University, Tirumalaisamudram, Thanjavur – 613401. +Corresponding Author: Arati Ramesh National Centre for Biological Sciences GKVK Campus, Bellary Road Bangalore, 560065 Tel. 91-80-23666930 e-mail: [email protected] Running title: Identification of ANTAR RNAs across Actinobacteria Keywords: ANTAR protein:RNA regulatory system, structured RNA, actinobacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA complex together regulates genes at the level of translation or transcriptional elongation.
    [Show full text]
  • Laboratory Diagnosis of Sexually Transmitted Infections, Including Human Immunodeficiency Virus
    Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus human immunodeficiency including Laboratory transmitted infections, diagnosis of sexually Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus Editor-in-Chief Magnus Unemo Editors Ronald Ballard, Catherine Ison, David Lewis, Francis Ndowa, Rosanna Peeling For more information, please contact: Department of Reproductive Health and Research World Health Organization Avenue Appia 20, CH-1211 Geneva 27, Switzerland ISBN 978 92 4 150584 0 Fax: +41 22 791 4171 E-mail: [email protected] www.who.int/reproductivehealth 7892419 505840 WHO_STI-HIV_lab_manual_cover_final_spread_revised.indd 1 02/07/2013 14:45 Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus Editor-in-Chief Magnus Unemo Editors Ronald Ballard Catherine Ison David Lewis Francis Ndowa Rosanna Peeling WHO Library Cataloguing-in-Publication Data Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus / edited by Magnus Unemo … [et al]. 1.Sexually transmitted diseases – diagnosis. 2.HIV infections – diagnosis. 3.Diagnostic techniques and procedures. 4.Laboratories. I.Unemo, Magnus. II.Ballard, Ronald. III.Ison, Catherine. IV.Lewis, David. V.Ndowa, Francis. VI.Peeling, Rosanna. VII.World Health Organization. ISBN 978 92 4 150584 0 (NLM classification: WC 503.1) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index.html).
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-50515 Sneathia amnii, Strain Sn35 Modified Brain Heart Infusion agar with 5% human serum or Chocolate agar or equivalent Catalog No. NR-50515 Incubation: Temperature: 37°C Atmosphere: Anaerobic For research use only. Not for human use. Propagation: 1. Keep vial frozen until ready for use, then thaw. Contributor: 2. Transfer the entire thawed aliquot into a single tube of Kimberly K. Jefferson, Ph.D., Associate Professor, broth. Department of Microbiology and Immunology and Gregory A. 3. Use several drops of the suspension to inoculate an agar Buck, Ph.D., Professor, Director of Center for the Study of slant and/or plate. Biological Complexity, Department of Microbiology and 4. Incubate the tube, slant and/or plate at 37°C for 2 to 3 Immunology, Virginia Commonwealth University School of day. Medicine, Richmond, Virginia, USA Citation: Manufacturer: Acknowledgment for publications should read “The following BEI Resources reagent was obtained through BEI Resources, NIAID, NIH: Sneathia amnii, Strain Sn35, NR-50515.” Product Description: Bacteria Classification: Leptotrichiaceae, Sneathia Biosafety Level: 2 Species: Sneathia amnii Appropriate safety procedures should always be used with this Strain: Sn35 material. Laboratory safety is discussed in the following Original Source: Sneathia amnii (S. amnii), strain Sn35 was publication: U.S. Department of Health and Human Services, isolated in 2011 from a vaginal swab collected from a Public Health Service, Centers for Disease Control and woman presenting with symptoms of preterm labor at 26 Prevention, and National Institutes of Health. Biosafety in weeks of gestation in Richmond, Virginia, USA.1,2 Microbiological and Biomedical Laboratories.
    [Show full text]
  • Examining the Link Between Macrophyte Diversity, Bacterial
    EXAMINING THE LINK BETWEEN MACROPHYTE DIVERSITY, BACTERIAL DIVERSITY, AND DENITRIFICATION FUNCTION IN WETLANDS DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Janice M. Gilbert, B.E.S., B.Ed., M.E.S., M.S. ***** The Ohio State University 2004 Dissertation Committee: Professor Virginie Bouchard, Adviser Approved by Professor Serita D. Frey, Co-adviser Professor Olli H. Tuovinen Professor Frederick C. Michel, Jr. Adviser Environmental Science Graduate Program ABSTRACT The relationship between aquatic plant (macrophyte) diversity, bacterial diversity, and the biochemical reduction of nitrate (denitrification) within wetlands was examined. Denitrification occurs under anoxic conditions when nitrate is reduced to either nitrous oxide (N2O), or dinitrogen (N2). Although previous studies have identified physical and chemical factors regulating the production of either gas in wetlands, the role that macrophyte diversity plays in this process is not known. The central hypothesis, based on the niche-complimentarity mechanism, was that an increase in macrophyte diversity would lead to increased bacterial diversity, increased denitrification, and decreased N2O flux. This hypothesis was investigated in two mesocosm studies to control environmental conditions while altering macrophyte functional groups (FG) and functional group diversity. In Study #1, five macrophyte functional groups (clonal dominants, tussocks, reeds, facultative annuals, and obligate annuals) were each represented by two species. Fifty-five mesocosms with 5-6 replicates of 0, 1, 2, 3, 4, or 5 macrophyte FG (0-10 species) were established in the spring of 2001 and sampled in August 2001, September 2001, and April 2002.
    [Show full text]
  • Phylogenetic Microarrays
    Phylogenetic Microarrays Phylogenetic Microarrays Oleg Paliy, Vijay Shankar and Marketa Sagova-Mareckova 9 Abstract microbial members. Many of these communities Environmental microbial communities are known play pivotal roles in ecosystem processes such as to be highly diverse, often comprising hundreds energy flow, elemental cycling, and biomass pro- and thousands of different species. Such great duction. Energy and nutrients in these systems complexity of these populations, as well as the are processed by intricate networks of metabolic fastidious nature of many of the microorganisms, pathways through multiple community members makes culture-based techniques both inefficient (Duncan et al., 2004; Belenguer et al., 2006; Flint and challenging to study these communities. The et al., 2008; De Vuyst and Leroy, 2011). The sheer analyses of such communities are best accom- complexity of such networks and the difficulty plished by the use of high-throughput molecular involved in culturing the individual members of methods such as phylogenetic microarrays and these communities have challenged researchers next generation sequencing. Phylogenetic micro- who have tried to gain a clearer understanding of arrays have recently become a popular tool for these interactions. Recent advances in molecular the compositional analysis of complex microbial technologies have significantly simplified the communities, owing to their ability to provide analysis of these communities because they simultaneous quantitative measurements of many remove the need to culture and grow community community members. This chapter describes the members individually. Some of the currently currently available phylogenetic microarrays used available molecular techniques include high- in the interrogation of complex microbial commu- throughput sequencing (discussed in chapter 8 of nities, the technology used to construct the arrays, this book), terminal restriction fragment length as well as several key features that distinguish them polymorphism (discussed in Chapter 6), cheq- from other approaches.
    [Show full text]