Download Full Report 4.0MB .Pdf File

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Report 4.0MB .Pdf File Museum Victoria Science Reports 12: 1–31 (2010) ISSN 1833-0290 https://doi.org/10.24199/j.mvsr.2010.12 Key to genera of larvae of Australian Chironomidae (Diptera) CHRIS P. MADDEN 28 Kingswood Crescent, Lockleys, South Australia 5032, Australia; email: [email protected] Abstract Madden, C.P. 2010. Key to genera of larvae of Australian Chironomidae (Diptera). Museum Victoria Science Reports 12: 1–31. A key is presented to aquatic chironomid larvae of Australia. Characters used to separate each genus are generally visible under a dissecting microscope which removes the need to routinely mount larvae to enable identification. Over ninety taxa are keyed, including some undescribed but distinctive taxa recognized by chironomid workers in Australia. This key will supplement other publications and enable identification beyond subfamily during biomonitoring and ecological sampling. Key Words Chironomidae, Australia, larvae, key, genus, identification guide Introduction ABRS grant to develop a Lucid key for the whole of Australia, of which this dichotomous key is a by-product. This key had its genesis when I was a student at the The aim of this key is to supplement the keys of Cranston University of Adelaide in the late 1980s. One of my (1996, 2000) which rely on the mounting of larvae and pupae supervisors, Phil Suter, provided me with a key to identify, to identify genera of the Chironomidae of Australia. I cannot mostly to the level of genus, chironomid larvae from the better the pupal key of Cranston. The translucent nature of Adelaide region, developed from the keys of Jon Martin, pupal skins means that the key can be successfully used to which were published in the Australian Society for identify whole pupae or exuviae without the need for Limnology newsletter (Martin 1974, 1975). Most characters permanent mounting. However, Cranston’s larval key could be observed without the need to mount larvae on generally uses internal characters that require clearing and microslides. References from the northern hemisphere were mounting of larvae to view characters and use the key. The also consulted and so some names were inappropriate, even if aim of this key is to allow identification to genus without the the taxa were distinctive. The first version of what became need for routine mounting of larvae. Peter Cranston’s AWT Taxonomic Workshop key (Cranston, This key aims to provide shortcuts to allow identification to 1996) was produced around this time, so I was able to use this genus by using characters visible on the whole animal (using to check identifications by mounting larvae. The next chapter a good quality microscope) and therefore reduce the need for of development happened when I was employed at the mounting of larvae for routine identification to genus. The Australian Water Quality Centre (AWQC) in Adelaide to lofty aim at the start of the project was to allow the work for the Monitoring River Health Initiative, which identification of all recognized genera or equivalent taxa in developed the Ausrivas methods. The Ausrivas program Australia without the need for mounting. It has not been sampled many parts of South Australia (SA) where possible to achieve this in all cases, notably in the macroinvertebrate collecting had not been carried out before, Tanypodinae, and there are some couplets where there is still so many new taxa were collected that did not fit Phil Suter’s the need for a temporary mount in glycerol to separate taxa. key. In SA we identified taxa past family level with available I have used the code names for undescribed taxa from keys, so I was able to take a month or so to compare the new Cranston (1996) where they are easily recognised and I had specimens and match others to drawings in Peter Cranston’s specimens available to photograph. Some of these have been key. This resulted in a more robust key with names as correct formally described since publication of that key and I have as they could be at the time. New staff were taught to use the used the formal names where they exist, while listing the key and we realised it was possible to routinely identify most codename as well. There are also a couple of voucher codes chironomids to genus without the need for mounting. As the used by Don Edward for taxa he has recognised in Western Ausrivas project drew to a close, the biomonitoring group at Australia. AWQC took on consulting work that meant we were One further aim of this key is to get ecologists and groups identifying specimens from other parts of Australia. As the carrying out biomonitoring programs to look past sub-family most familiar with Chironomidae, I was given the task of level when identifying Chironomidae (hopefully nobody is identifying them. I used the SA key as a starting point and still in the Dark Ages and leaves identifications at family soon realised that the common taxa were all included and that level!). There are nearly 100 genera listed in this key, which others could easily be added in new couplets. So it became can provide an enormous amount of ecological information apparent that a key using whole larval characteristics may be when identified. In my experience, apart from high quality possible for the whole of Australia. The final chapter has sites with natural vegetation, when diversity at genus level is happened since I became a consultant and was awarded an considered, the family Chironomidae are usually more diverse Madden, C.P. than most orders, including the Ephemeroptera, Plecoptera This key sometimes uses characters that are secondary and and Trichoptera combined. not diagnostic for a genus so I would urge the user to confirm identification by mounting representative larvae from a group Some operating requirements. I have used an Olympus SZX- of specimens until confident with the use of the key and 12 with a 7 to 90 zoom and a 1x objective lens when viewing recognition of the characters used. When collecting and larvae and all characters can be recognized below the viewing larvae please be aware of mature larvae that are maximum magnification. Photographs were taken by the about to pupate (recognised by the swollen thorax, e.g. author using an Automontage camera system on a Zeiss Figures 23, 63 and 65). These specimens can be invaluable as microscope at the University of Adelaide, apart from those an aid to identification because they exhibit both larval and taken using the Automontage at DEC in Perth. Some pupal characters, such as thoracic respiratory horns and photographs were taken by Ros St Clair of the Victorian EPA abdominal setal patterns, and can allow the recognition of a and Peter Cranston of the University of California, Davis genus that is more distinctive in the pupal stage e.g. using their own Automontage systems. Botryocladius. A pupa that still has a larval skin attached can An assumed knowledge of chironomid larval morphology is be used in a similar manner to recognise taxa. not included a guide as this can be obtained from the webpage Collection and observation of mature larvae and pupae with for the Electronic Guide to the Chironomidae of Australia attached larval skins is also a valuable method for linking life (http://entomology.ucdavis.edu/chiropage/index.html). stages of taxa with few collected specimens. Key to genera of larvae of Australian Chironomidae 1 Eye spot single and round or kidney-shaped (Figure 1) or if eyespot appears double then procercus prominent (Figure 2) ...... 2 Eye spot single and complex or more than one eye spot (Figure 3) or if eyespot appears single then procercus absent (Figure 4) .................................................................................................................................................................................................. 28 Figure 1. Figure 2. Figure 3. Figure 4. Gymnometriocnemus (Don Edward V45) 2 Key to the larvae of Australian Chironomidae 2(1) Head usually long, or if short, eye kidney-shaped (Figure 5), avoid capture by moving backwards when alive .......................... ............................................................................................................................................................................ (Tanypodinae) 3 Head short (Figure 6) ................................................................................................................................................................ 19 Figure 5. Figure 6. 3(2) Lateral fringe present (Figure 7), dorsomentum distinct and toothed (Figure 8) ........................................................................ 4 Lateral fringe absent (but some body setae may be present), dorsomentum indistinct, not toothed ......................................... 11 Figure 7. Clinotanypus Figure 8. Apsectrotanypus 4(3) Head with large gape (Figure 9), sharply wedge-shaped in lateral view .................................................................... Coelopynia Head without large gape (Figure 8) ............................................................................................................................................ 5 Figure 9. Coelopynia 5(4) Head conical shape (Figure 10), eyes on ventral surface of head, large larvae up to 15 mm, distribution Murray drainage and north ........................................................................................................................................................................ Clinotanypus Head not conical, eyes on lateral edge of head ..........................................................................................................................
Recommended publications
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Marine Midge Telmatogeton Japonicus Tokunaga (Diptera: Chironomidae) Exploiting Brackish Water in Finland
    Aquatic Invasions (2009) Volume 4, Issue 2: 405-408 DOI 10.3391/ai.2009.4.2.20 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article Short communication Marine midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) exploiting brackish water in Finland Janne Raunio1*, Lauri Paasivirta2 and Yngve Brodin3 1Janne Raunio, Water and Environment Association for the River Kymi, Tapiontie 2 C, FIN-45160 Kouvola, Finland E-mail: [email protected] 2Lauri Paasivirta, Ruuhikoskenkatu 17 B 5, FIN-24240 Salo, Finland E-mail: [email protected] 3Yngve Brodin, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden E-mail: [email protected] *Corresponding author Received 20 March 2009; accepted in revised form 26 May 2009; published online 3 June 2009 Abstract Pupal exuviae of marine intertidal midge Telmatogeton japonicus Tokunaga (Diptera: Chironomidae) were found in September 2008 from the Gulf of Finland, Baltic Sea. Previous records of the species in the Baltic Sea were from Sweden, Denmark, Germany and Poland. Telmatogeton japonicus is an alien species introduced to Europe from the Pacific Ocean. It probably uses shipping as the vector, since in north-western Europe it has first been detected near large seaports. This was also the case in the Gulf of Finland. Our findings suggests that the species’ distribution extends further northeast in the Baltic Sea than understood before, and that the species is able to establish viable populations into fresh-brackish (salinity < 4 ‰) coastal habitats. Key words: Telmatogeton japonicus, Chironomidae, pupal exuviae, Gulf of Finland Benthic macroinvertabrate communities in the 2005; Raunio 2008) to assess chironomid littoral and sub-littoral zones in the Gulf of community composition in three areas in the Finland (Baltic Sea) are rather poorly known, as Gulf of Finland (Figure 1).
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Nearctic Chironomidae
    Agriculture I*l Canada A catalog of Nearctic Chironomidae A catalog of Catalogue des Nearctic Chironomidae Chironomidae delardgion ndarctique D.R. Oliver and M.E. Dillon D.R. Oliver et M.E. Dillon Biosystematics Research Centre Centre de recherches biosyst6matiques Ottawa, Ontario Ottawa (Ontario) K1A 0C6 K1A 0C6 and et P.S. Cranston P.S. Cranston Commonwealth Scientific and Organisation de la recherche Industrial Research scientifique et industrielle du Organization, Entomology Commonwealth, Entomologie Canberra ACT 2601 Canberra ACT 2601 Australia Australie Research Branch Direction g6n6rale de la recherche Agriculture Canada Agriculture Canada Publication 185718 Publication 185718 1 990 1 990 @Minister of Supply and Services Canada 1990 oMinistre des Approvisionnement et Services Canada 1990 Available in Canada through En vente au Canada par I'entremise de nos Authorized Bookstore Agents agents libraires agr66s et autres and other bmkstores libraires. or by mail from ou par la poste au Canadian Govemnent Publishing Centre Centre d'6dition du gouvemement du Supply and Servies Canada Canada Oltawa, Canada K1A 0S9 Approvisionnements et Seryies Canada Ottawa (Canada) K1A 0S9 Cat No. A43-I85'7ll99O N" de cat A43-785117990 ISBN 0-660-55839-4 ISBN 0-660-55839-4 Price subject to change without notic€ Prix sujet i changemenl sans pr6avis Canadian Cataloguing in Publication Data Donn6ee de catalogage avant publication (Canada) Oliver, D.R. Oliver, D.R. A mtalog of Nearctic Chironomidae A atalog of Nearctic Chironomidae (Publication ; 1857/8) (Publiation ; 18578) Text in English and French- Texle en anglais et en frangais. Includes bibliographiel referenes. Comprend des r6f6rences bibliogr. Issued by Research Branch, Agriculture Canada.
    [Show full text]
  • DNA Barcoding
    Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae)
    [Show full text]
  • Studies on Ecology of Marine Chironomids in Southwestern Japan INTRODUCTION MATERIALS and METHODS
    生物圏科学 Biosphere Sci. 54:13-19 (2015) Studies on ecology of marine chironomids in southwestern Japan 1)* 1) 2) Koichiro KAWAI , Hidetoshi SAITO and Katsuo SUGIMARU 1)Laboratory of Aquatic Ecology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan 2) Research Dept., Fumakira Co. Ltd., 1-11-1, Umehara, Hatsukaichi-shi, Hiroshima 739-0494, Japan Abstract Ecological studies were conducted on marine chironomids in south-western Japan. A total of 20 species was collected. For vertical distribution, only a few species was distributed only at high or middle intertidal zone while many species were distributed only at low zone. For substrate preference, some species were collected only on rocks or in mud while many species were collected only in seaweeds. For geographical distribution, a few species was collected only in the southwestern islands or in the oceanic coast in the Japanese main islands. In contrast, some species were collected in the Seto Inland Sea and the oceanic coast in the main islands, in the oceanic coast in the main islands and the southwestern islands, or in all areas. For seasonal emergence, Dicrotendipes enteromorphae was collected only in summer and autumn, and Semiocladius endocladiae was collected in all seasons. Other species were collected only in autumn and winter, or only in winter and spring. These results suggest that many chironomid species with a variety of lifestyles dwell in intertidal zones and have some important roles in the ecosystems. Key Words: sessile organisms, chironomid, distribution, intertidal zone, seaweed INTRODUCTION Chironomids (Diptera: Chironomidae) are one of the widely distributed insects on the earth (Nihon yusurika kenkyu-kai, 2010).
    [Show full text]
  • The Role of Chironomidae in Separating Naturally Poor from Disturbed Communities
    From taxonomy to multiple-trait bioassessment: the role of Chironomidae in separating naturally poor from disturbed communities Da taxonomia à abordagem baseada nos multiatributos dos taxa: função dos Chironomidae na separação de comunidades naturalmente pobres das antropogenicamente perturbadas Sónia Raquel Quinás Serra Tese de doutoramento em Biociências, ramo de especialização Ecologia de Bacias Hidrográficas, orientada pela Doutora Maria João Feio, pelo Doutor Manuel Augusto Simões Graça e pelo Doutor Sylvain Dolédec e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Agosto de 2016 This thesis was made under the Agreement for joint supervision of doctoral studies leading to the award of a dual doctoral degree. This agreement was celebrated between partner institutions from two countries (Portugal and France) and the Ph.D. student. The two Universities involved were: And This thesis was supported by: Portuguese Foundation for Science and Technology (FCT), financing program: ‘Programa Operacional Potencial Humano/Fundo Social Europeu’ (POPH/FSE): through an individual scholarship for the PhD student with reference: SFRH/BD/80188/2011 And MARE-UC – Marine and Environmental Sciences Centre. University of Coimbra, Portugal: CNRS, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, University Lyon1, France: Aos meus amados pais, sempre os melhores e mais dedicados amigos Table of contents: ABSTRACT .....................................................................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Final Report IV
    Final Report Development of alternative approaches for monitoring the effects of the mosquito control agent Bti on ecosystems of the Dalälven catchment Brendan McKie & Willem Goedkoop Department of Aquatic Sciences & Assessment Swedish University of Agricultural Sciences Uppsala Campus Other contributing staff members: Oded Levanoni, Jakob Nissel, David Angeler, Richard Johnson. 1 TABLE OF CONTENTS (A) Utökad sammanfattning / Expanded Summary Utökad svensk sammanfattning, inklusiv ett preliminärt förslag till övervakning av Bti- effekter.............................................................................................................................................................. 4 I) Litteratursammanställning – Sammanfattning av resultat........................................................................ 5 II) Biologisk övervakning av Bti-effekter i andra länder................................................................................... 6 III) Utvärdering av tidigare övervakning 2002-2007:........................................................................................ 6 IV) Statistisk analys av befintliga data...................................................................................................................... 7 V) GIS-analys av potentiella referensområden i Nedre Dalälven................................................................... 8 VI) Preliminärt förslag till övervakning av Bti-effekter..................................................................................... 9 Expanded
    [Show full text]
  • MOLECULAR IDENTIFICATION of CHIRONOMID SPECIES BASED on ITS-1 and ITS-2 REGIONS of Rdna
    MOLECULAR IDENTIFICATION OF CHIRONOMID SPECIES BASED ON ITS-1 AND ITS-2 REGIONS OF rDNA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MONITA SHARMA B.Sc. Maharani College, Jaipur, India 2001 2007 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES May 15, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Monita Sharma ENTITLED Molecular Identification of Chironomid species based on ITS-1 and ITS-2 regions of rDNA BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ___________________________ Dan E. Krane, Ph.D. ___________________________ David Goldstein, Ph.D. Department Chair, Committee on Biological Sciences Final Examination ____________________________ Dan E. Krane, Ph.D. ____________________________ Stephanie A. Smith, Ph.D. ____________________________ Yvonne M. Vadeboncoeur, Ph.D. ____________________________ Michele Wheatly, Ph.D. Dean, College of Science and Mathematics ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies ABSTRACT Sharma, Monita. M.S., Department of Biological Sciences, Wright State University, 2007. Molecular Characterization of Chironomid species and their use as bio-indicators. Of all major aquatic invertebrate groups, members of family Chironomidae are most abundant and show a wide range of habitat preferences. The importance of correct identification of Chironomids has been realized in many bioassessment studies mainly because of their worldwide distribution, substrate specificities and predictable responses to various pollutants in the water sources. This study establishes that the sequence data from the Intergenic Spacer Regions (ITS) of ribosomal DNA could be used as molecular markers to distinguish between different Chironomidae species and also to identify them.
    [Show full text]