Workshop Program

Total Page:16

File Type:pdf, Size:1020Kb

Workshop Program 19th International Workshop on (Quantitative) Structure-Activity Relationships in Environmental and Health Sciences June 7th – June 9th, 2021 Workshop Program QSAR 2021 Workshop Program Table of Contents th June 7 , 2021 ............................................................................................................. 3 Development, Evaluation and Application of QSARs to Fill Data Gaps ............................................ 3 Cheminformatic Approaches to 'Big Data' and Biological Activity Profiling ..................................... 6 Keynote – Professor Mark Cronin ................................................................................................... 9 Poster Sessions Track 1 .................................................................................................................. 9 Poster Sessions Track 2 ................................................................................................................ 18 Poster Sessions Track 3 ................................................................................................................ 27 th June 8 , 2021 ........................................................................................................... 36 Development, Evaluation and Application of QSARs and Thresholds of Toxicological Concern (TTC) ............................................................................................................................................. 36 Emerging Issues ............................................................................................................................ 39 Keynote – Dr. Russell Thomas ...................................................................................................... 42 Poster Sessions Track 4 ................................................................................................................ 42 Poster Sessions Track 5 ................................................................................................................ 51 Poster Sessions Track 6 ................................................................................................................ 60 th June 9 , 2021 ........................................................................................................... 70 Application of Tools ....................................................................................................................... 70 Non Targeted Screening, Characterising Uncertainty and Informatics ......................................... 72 Keynote – Dr. Elizabeth Mannshardt ............................................................................................. 75 Poster Sessions Track 7 ................................................................................................................ 75 Poster Sessions Track 8 ................................................................................................................ 83 Poster Sessions Track 9 ................................................................................................................ 91 Sponsors ................................................................................................................ 100 2 QSAR 2021 Workshop Program June 7th, 2021 Development, Evaluation and Application of QSARs to Fill Data Gaps 286 Using physiologically-based kinetic models to inform read-across Judith Madden1, Courtney Thompson1, Steven Webb2, David Ebbrell1, Peter Penson1, Yu-Mei Tan3, Alicia Paini4 1Liverpool John Moores University, Liverpool, United Kingdom. 2Syngenta, Bracknell, United Kingdom. 3US Environmental Protection Agency, Research Triangle Park, USA. 4European Commission Joint Research Centre, Ispra, Italy Abstract Physiologically-based kinetic (PBK) models can be used to describe organ level concentration-time profiles of xenobiotics. This is key to accurate prediction of the potential effects of xenobiotics as these are determined by both inherent activity and internal exposure. Read-across, an increasingly important tool in many sectors, is reliant on data being available for other “similar” chemicals; similar in terms of activity and internal exposure profile. PBK models are data-hungry and time- consuming to develop de novo. However, it has been shown that using data from an existing model can be used to inform the development of a model for a similar chemical (Lu et al 2016). In order to ascertain for which chemicals PBK models are currently available, we have undertaken a systematic review of literature, to generate a readily-searchable source of existing PBK models. Selecting the most appropriate model to use as a template and combining this with appropriately adjusted input parameters is key to generating a reliable model for the target chemical. Here we discuss the results of the systematic review and demonstrate how an existing PBK model for one chemical was used to develop an acceptable PBK model for an analogue. Lu et al (2016) PLoS Comput Biol 12(2): e1004495. Disclaimer: The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency The funding of the European Partnership for Alternative Approaches to Animal Testing (EPAA) is gratefully acknowledged. 333 Analog Approach for PBPK Modeling of Synthetic Food Dyes James Rathman1,2, Vinnie Ribeiro1, Judith Madden3, Aleksandra Mostrag1, Bryan Hobocienski1, Mark Cronin3, Chihae Yang1,4,2 1MN-AM, Columbus, USA. 2Ohio State University, Columbus, USA. 3Liverpool John Moores University, Liverpool, United Kingdom. 4MN-AM, Nuremberg, Germany Abstract To improve our understanding of the fate of synthetic food dyes in vivo, physiologically based pharmacokinetic (PBPK) modeling was used to explore exposure scenarios for several FDA-approved synthetic dyes. Given a target structure for which the available data are insufficient for building a PBPK model, we describe a read-across inspired approach in which data and PBPK models for one or more data-rich analogs were used to develop a PBPK model for the target. A large database covering a diverse chemical space (e.g., pharmaceuticals, agrochemicals, cosmetics, food ingredients) was leveraged to find analog structures and identify relevant studies. Oral absorption (HIA), plasma protein binding (PPB) and blood-brain barrier (BBB) permeability were necessary inputs for the PBPK models in this study. QSAR models were developed for these properties to enable their estimation when experimental values were not available. As an example, relatively few data were available for Sunset Yellow or its metabolites, so analog candidates were identified from the PK 3 QSAR 2021 Workshop Program knowledgebase. Amaranth and Tartrazine were identified as the closest analogs. PBPK simulations for Tartrazine, a data- rich food dye, and its metabolites were performed to explore the effects of varying dose, routes of administration (oral- gavage, oral-dietary), and species (mouse, rat). This Tartrazine model was then used to construct a PBPK model for Sunset Yellow. Accurately estimating the additional uncertainty introduced by using analog data, rather than data for the target itself, depends on quantitatively capturing the target-analog similarity in terms of the relevant chemical and biological mechanisms. 210 Simulating the kinetic of metabolism for explaining differences between in vitro vs in vivo mutagenicity Petko Petkov1, Masamitsu Honma2, Takashi Yamada2, Takeshi Morita2, Ayako Furuhama2, Hristiana Ivanova1, Stefan Kotov1, Elena Kaloyanova1, Ovanes Mekenyan1 1Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria. 2Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan Abstract The traditional (Q)SAR models predict mutagenicity as a result of identification of alerts for the interaction of chemicals with macromolecules. However, the in vivo mutagenicity tests have longer duration as compared with the in vitro tests which is one of the factors to make them incomparable. In the current existing (Q)SARs different duration of mutagenicity tests are not taken into account. Conceptually new SAR approach is introduced accounting for the duration of the test and relating the potency to the amount of formed DNA/protein adducts, which, in turn, depends on the kinetic of metabolism and adducts formation. The differences between in vitro and in vivo metabolic systems are investigated for chemicals having in vitro negative and in vivo positive data in mutagenicity tests with similar capacity (interacting by same macromolecules), such as the pairs in vitro Ames vs. in vivo TGR and in vitro CA vs. in vivo MN tests. Kinetic models have been derived for these mutagenicity effects. Two major factors are found to affect the conflicting mutagenicity data: 1) the generation of in vivo-specific metabolites driven by different enzyme expression and 2) duration of the in vitro and in vivo mutagenicity tests. Addressing these two factors requires explicit introduction of metabolic transformations simulating the formation of DNA/protein adducts. Empirically-defined thresholds for the adducts are introduced to each mutagenicity alert to distinguish mutagens from non-mutagens. Developing of the new kinetic models allows to explain the differences between in vitro and in vivo mutagenicity. 317 Predicting in vitro intrinsic hepatic clearance in mammals Ester Papa1, Linda Bertato1, Ilaria Casartelli1, Nicola Chirico1, Alessandro
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Safrole and the Versatility of a Natural Biophore Lima, L
    Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities.
    [Show full text]
  • Chavicol, As a Larva-Growth Inhibitor, from Viburnum Japonicum Spreng
    Agr. Biol. Chem., 40 (11), 2283•`2287, 1976 Chavicol, as a Larva-growth Inhibitor, from Viburnum japonicum Spreng. Hajime OHIGASHI and Koichi KOSHIMIZU Department of Food Science and Technology. Kyoto University, Kyoto Japan Received July 22, 1976 Chavicol was isolated as a drosophila larva-growth inhibitor from the leaves of Viburnum japonicum Spreng. The inhibitory activities of chavicol and its related compounds against drosophila larvae and adults were examined. To obtain biologically active substances assignable to allylic, terminal olefinic, a hydrox against insects from plants, we recently devised yl, an olefinic and 1, 4-di-substituted benzene a convenient bio-assay using drosophila larvae. ring protons, respectively. The double The assay is of great advantage to judge easily resonance experiment clarified that the protons the effects of compounds on the growth of the at ƒÂ 3.26 coupled with both the proton at ƒÂ insects at each stage from the larvae to the 5.7•`6.2 (with J=7Hz) and protons at ƒÂ 4.9•` adults. In the screening of plant extracts by this method, we found that the methanol ex tract of the leaves of Viburnum japonicum Spreng. inhibited remarkably the growth of the larvae. We report here the isolation, identification of the active component of V. japonicum, and also report the activities of the component and the related compounds against the adults as well as the larvae. An ethyl acetate-soluble part of the methanol extract was chromatographed on silicic acid- Celite 545 eluted with benzene of an increasing ratio of ethyl acetate. The larva-killing activi ty was found in a fraction eluted with 5% ethyl acetate in benzene.
    [Show full text]
  • THE THIOBARBITURIC ACID TEST in IRRADIATION-STERILIZED BEEF By
    THE THIOBARBITURIC ACID TEST IN IRRADIATION-STERILIZED BEEF by NORMAN LEE SMITH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1959 APPROVED: Redacted for Privacy Associate Professor of Chemistry In Ghare of Major Redacted for Privacy Chairman of Department of Chemistry Redacted for Prîvacy Chairman of choo1 Graduate Committee Dean of Graduate School Date thesi9 19 presented July 10, 195B Typed by Cliatie Stoddard AC KOV'LEDGEMENTS The author would like to exprese his most sincere appreciation to Dr. E. C. Bubi, who by his guidance, help, and enthusiasm has made work on this project both an education and a pleasure. Especial thanks also o to Dr. Ian J. Tinsley, whose unfailing supply of timely suggestions, il1uminatin dis- cussions, and refreshing good humor was most generously shared. TABLE OF CONTENTS Chapter pase i INTRODUC T ION . i 2. LITERATURE STJRVEY . 5 3. PREPARATION AND IRRADIATION OF SAMPLES . 10 4. COLOR TESTS WITH THIOBARBITURIC ACID . 12 5. REAGENTS AND INSTRUMENTS . 15 6. GENERAL INFORMATION ON THE MEAT-TBA REACTION 17 Meat fractions and TBA reaction . 17 Spectral curves of meat-TBA piment solutions . 21 Autoc1avin of meat sampleß . ¿5 7. GENERAL INFORMATION ON THE GLYOXAL-TEA flc..tt'si.Lmr\?s1 L)i s S S S I S S S S ' Effect of pli on glyoxal-TBA reaction . 26 Glyoxal-barbituric acid reaction . 26 Barbituric acid reaction with beef . , 27 para-aminoacetophenone reaction with 1yoxal, malonaldehyde, and irradiated beef . 27 8. GLYOXAL-TBA AND :EAT-TBA PIGMENT PJI- FICATION e s .
    [Show full text]
  • Piper Betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications
    molecules Review Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications Ni Made Dwi Mara Widyani Nayaka 1,* , Maria Malida Vernandes Sasadara 1 , Dwi Arymbhi Sanjaya 1 , Putu Era Sandhi Kusuma Yuda 1 , Ni Luh Kade Arman Anita Dewi 1 , Erna Cahyaningsih 1 and Rika Hartati 2 1 Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; [email protected] (M.M.V.S.); [email protected] or [email protected] (D.A.S.); [email protected] (P.E.S.K.Y.); [email protected] (N.L.K.A.A.D.); [email protected] or [email protected] (E.C.) 2 Pharmaceutical Biology Department, Bandung Institute of Technology, Bandung 40132, Indonesia; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Piper betle (L) is a popular medicinal plant in Asia. Plant leaves have been used as a tradi- tional medicine to treat various health conditions. It is highly abundant and inexpensive, therefore promoting further research and industrialization development, including in the food and pharma- ceutical industries. Articles published from 2010 to 2020 were reviewed in detail to show recent updates on the antibacterial and antifungal properties of betel leaves. This current review showed that betel leaves extract, essential oil, preparations, and isolates could inhibit microbial growth and kill various Gram-negative and Gram-positive bacteria as well as fungal species, including those that Citation: Nayaka, N.M.D.M.W.; are multidrug-resistant and cause serious infectious diseases. P. betle leaves displayed high efficiency Sasadara, M.M.V.; Sanjaya, D.A.; on Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria Yuda, P.E.S.K.; Dewi, N.L.K.A.A.; such as Staphylococcus aureus, and Candida albicans.
    [Show full text]
  • WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T (51) International Patent Classification: (74) Agent: KHURANA & KHURANA, ADVOCATES & IP C07D 317/68 (2006.01) C07C 45/56 (2006.01) ATTORNEYS; E-13, UPSIDC, Site-IV, Behind-Grand Venice, Kasna Road, UP, National Capital Region, Greater (21) International Application Number: Noida 201310 (IN). PCT/IB201 5/053 112 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 29 April 2015 (29.04.2015) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 4124/MUM/2014 23 December 2014 (23. 12.2014) IN MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicant: ANTHEA AROMATIC S PRIVATE LIM¬ SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ITED [IN/IN]; R-81/82 TTC Industrial Area, Rabale Midc, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination
    Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination Keng Hong Tan1a* and Ritsuo Nishida2b 1Tan Hak Heng, 20, Jalan Tan Jit Seng, 11200 Penang, Malaysia 2Laboratory of Chemical Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan Abstract This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants. Keywords: allomone, attractant, Bactrocera, chemical ecology, floral fragrance, insect pollinators, plant–insect interactions, plant semiochemicals, sex pheromone, synomone, tephritid fruit flies Abbreviations: ME, methyl eugenol; RK, raspberry ketone Correspondence: a [email protected], b [email protected], *Corresponding author Editor: Todd Shelly was editor of this paper. Received: 28 April 2011, Accepted: 27 August 2011 Copyright : This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 12, Number 56 Cite this paper as: Tan KH, Nishida R. 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12:56 available online: insectscience.org/12.56 Journal of Insect Science | www.insectscience.org 1 Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida 1. Introduction ME has been successfully used in: a) fruit fly surveys (Tan and Lee 1982) and quarantine Plants produce a huge array of chemicals, detection (see reviews by Metcalf and Metcalf numbering tens of thousands, primarily for 1992; Vargas et al.
    [Show full text]
  • Glyoxylic Acid. by VICTORJOHN HARDING and CHARLESWEIZMANN
    View Article Online / Journal Homepage / Table of Contents for this issue 1126 HARDlNC3 AND WEIZMANN : SYNTHESIS OF XCIV.-Synthesis of 6-Carboxy-3: 4-dimethoxyphenyl- glyoxylic Acid. By VICTORJOHN HARDING and CHARLESWEIZMANN. AMONGthe products of the oxidation of trimethylbrazilin by means of warm potassium permanganate, there was found to occur a dibasic acid possessing the empirical formula C,,H,,O,. This acid, which was isolated and investigated in these laboratories by W. H. Perkin, jun., was shown to be 6-carboxy-3: 4-dimethoxy- phenylglyoxylic acid (I) [“ dimethoxycarboxybenzoylformic acid ”1 (Trans., 1902, 81, 1022). In the present communication the authors describe the synthesis of this acid from 4 : 5-dimethoxy-o-methyZacetophenone(11) : MeO/\C02H MeOAMe MeO/\Me MeOl ‘CO*C02H MeOI ICOMe Me01 /CO*CO,H \/ \/ \/ (1.1 (11.) (111.) This ketone is easily prepared by the condensation of acetyl chloride and homocatechol dimethyl ether by means of aluminium chloride. When oxidised by warm potassium permanganate there is first isolated 4 : 5-clinz,ethoxy-o-tolylgl~o~l~cacid (111). Further oxidation converts the methyl group into a carboxy-group, and leads to the production of 6-carboxy-3 : 4-dimethoxyphenylglyoxylic acid. Although it has not been found possible directly to compare the synthetical acid with that obtained from trimethylbrazilin, the Published on 01 January 1910. Downloaded by New York University 27/02/2016 21:27:57. authors do not think there can be much doubt as to their identity. The following are the properties of the synthetical acid: 1. Calcium cE’loride, with a neutral solution of the ammonium salt, gives no precipitate in the cold, but on warming, the crystalline calcium salt separates af; once.
    [Show full text]
  • Assessment of Antimicrobial Activity, Mode of Action and Volatile Compounds of Etlingera Pavieana Essential Oil
    molecules Article Assessment of Antimicrobial Activity, Mode of Action and Volatile Compounds of Etlingera pavieana Essential Oil Porawan Naksang 1 , Sasitorn Tongchitpakdee 1, Kanjana Thumanu 2, Maria Jose Oruna-Concha 3, Keshavan Niranjan 3 and Chitsiri Rachtanapun 1,4,* 1 Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; [email protected] (P.N.); [email protected] (S.T.) 2 Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand; [email protected] 3 Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK; [email protected] (M.J.O.-C.); [email protected] (K.N.) 4 Center for Advanced Studied Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand * Correspondence: [email protected]; Tel.: +66-2562-5000 (ext. 5206) Academic Editors: Francesca Mancianti and Satyajit Sarker Received: 25 May 2020; Accepted: 13 July 2020; Published: 16 July 2020 Abstract: Etlingera pavieana (Pierre ex Gagnep.) R.M.S. is a rhizomatous plant in the Zingiberaceae family which could be freshly eaten, used as a condiment or as a traditional remedy. Our work investigated the chemical composition and antimicrobial activity of the E. pavieana essential oils extracted from the rhizome (EOEP). We extracted the EOEP from the rhizome by hydrodistillation and analyzed the chemical composition by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC/MS). A total of 22 volatile compounds were identified where trans-anethole (78.54%) and estragole (19.36%) were the major components in the EOEP.
    [Show full text]
  • Betel-Like-Scented Piper Plants As Diverse Sources of Industrial and Medicinal Aromatic Chemicals
    Chiang Mai J. Sci. 2014; 41(5.1) 1171 Chiang Mai J. Sci. 2014; 41(5.1) : 1171-1181 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Betel-like-scented Piper Plants as Diverse Sources of Industrial and Medicinal Aromatic Chemicals Arisa Sanubol [a], Arunrat Chaveerach*[a], Runglawan Sudmoon [a], Tawatchai Tanee [b], Kowit Noikotr [c] and Chattong Chuachan [d] [a] Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. [b] Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham 44000, Thailand. [c] Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand. [d] Garden and Development Department, Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai 50180, Thailand. *Author for correspondence; e-mail: [email protected] Received: 21 May 2013 Accepted: 10 August 2013 ABSTRACT Piper betle (Piperaceae) or betel leaf, known locally as “Phlu” has been used by people in Thailand for chewing for a long time. Additionally, the leaves are used for traditional remedies and folk customs, such as for weddings and housewarming ceremonies. More recently, the aromatic oil industry has used the leaves for oil distillation. Moreover, the oils are used in several household products. Over the past 12 years of our research on Piper species, we found that among the more than 43 species recorded, there are some plants other than P. betle that possess a betel-like scent, viz. P. betloides, P. crocatum, P. maculaphyllum, P. rubroglandulosum, P. semiimmersum, P. submultinerve, P. tricolor, and P. yinkiangense. As it was expected that these plants would contain similar useful chemicals, their extracts were screened for the chemical contents by GC-MS.
    [Show full text]
  • Eugenol and Isoeugenol, Characteristic Aromatic Constituents of Spices, Are Biosynthesized Via Reduction of a Coniferyl Alcohol Ester
    Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester Takao Koeduka*†, Eyal Fridman*†‡, David R. Gang†§, Daniel G. Vassa˜ o¶, Brenda L. Jackson§, Christine M. Kishʈ, Irina Orlovaʈ, Snejina M. Spassova**, Norman G. Lewis¶, Joseph P. Noel**, Thomas J. Baiga**, Natalia Dudarevaʈ, and Eran Pichersky*†† *Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048; §Department of Plant Sciences and Institute for Biomedical Science and Biotechnology, University of Arizona, Tucson, AZ 85721-0036; ¶Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; ʈDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and **Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Anthony R. Cashmore, University of Pennsylvania, Philadelphia, PA, May 5, 2006 (received for review March 31, 2006) Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food pres- ervation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the en- zymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glan- dular trichomes of sweet basil (Ocimum basilicum), which synthe- size and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol.
    [Show full text]