Chavicol, As a Larva-Growth Inhibitor, from Viburnum Japonicum Spreng

Total Page:16

File Type:pdf, Size:1020Kb

Chavicol, As a Larva-Growth Inhibitor, from Viburnum Japonicum Spreng Agr. Biol. Chem., 40 (11), 2283•`2287, 1976 Chavicol, as a Larva-growth Inhibitor, from Viburnum japonicum Spreng. Hajime OHIGASHI and Koichi KOSHIMIZU Department of Food Science and Technology. Kyoto University, Kyoto Japan Received July 22, 1976 Chavicol was isolated as a drosophila larva-growth inhibitor from the leaves of Viburnum japonicum Spreng. The inhibitory activities of chavicol and its related compounds against drosophila larvae and adults were examined. To obtain biologically active substances assignable to allylic, terminal olefinic, a hydrox against insects from plants, we recently devised yl, an olefinic and 1, 4-di-substituted benzene a convenient bio-assay using drosophila larvae. ring protons, respectively. The double The assay is of great advantage to judge easily resonance experiment clarified that the protons the effects of compounds on the growth of the at ƒÂ 3.26 coupled with both the proton at ƒÂ insects at each stage from the larvae to the 5.7•`6.2 (with J=7Hz) and protons at ƒÂ 4.9•` adults. In the screening of plant extracts by this method, we found that the methanol ex tract of the leaves of Viburnum japonicum Spreng. inhibited remarkably the growth of the larvae. We report here the isolation, identification of the active component of V. japonicum, and also report the activities of the component and the related compounds against the adults as well as the larvae. An ethyl acetate-soluble part of the methanol extract was chromatographed on silicic acid- Celite 545 eluted with benzene of an increasing ratio of ethyl acetate. The larva-killing activi ty was found in a fraction eluted with 5% ethyl acetate in benzene. Further chromato graphy of the active fraction on Florisil, fol lowed by preparative thin-layer chromato graphy on silica gel afforded an active com ponent (1) as a colorless oil. The active component (1) showed UV absorp tion maximum at 259nm (in EtOH, ƒÃ=1200) and IR absorption bands (in CHCl3) at 3450 (-OH), 1645, 990 and 920 (-HC=CH2), 1600, 1510 and 1440cm-1 (benzene ring), respective- ly. The PMR spectrum in CDCl3 gave the signals at ƒÂ 3.26 (2H, broad d., J=7 Hz), 4.9•`5.2 (2H, m.), 5.6 (1H, broad, disappeared in addition of D2O), 5.7•`6.2 (1H, m.) and 6.71 (2H, d., J=8Hz), 7.00 (2H, d., J=8Hz), 2284 H. OHIGASHI and K. KOSHIMIZU 5.2 (long-range coupling). The spectral TABLE I. THE EFFECTOF CHAVICOL(1) evidences indicated the active component (1) ON THE LARVA-GROWTHOF to be a 4-allyl-phenol (chavicol) and the identity D. melanogaster was confirmed by direct comparison with an authentic chavicol derived from an estragole (2).1) Chavicol has been known to occur in spice- plants such as Piperaceae,2) Myrtaceae,3) Zingiberaceae,4) Rutaceae5) and Labiatae,6) although neither the larva-growth inhibitory property nor the occurrence in V. japonicum have been reported. The larva-growth inhibitory assay was only slight inhibition of the adult-emergence carried out by the following method. Ten was observed. larvae of Drosophila melanogaster in 2nd The larva-growth inhibitory activities of the instar were cultivated on a Pearl's synthetic related compounds such as eugenol (5), isoeu medium (3ml)7) in a test tube containing a genol (6), safrole (7), isosafrole (8), o-allyl certain amount of a sample to be tested. The - phenol (9) and their derivatives, 10•`14 were development of the larvae was observed every examined and the results are shown in Table 24hr up to the time of emergence of control III. Eugenol (5), isoeugenol (6), safrole (7), adults. The larva-growth inhibitory activity isosafrole (8), o-allyl-phenol (9) and their can be judged by either inhibition of the dihydro-derivatives, 10, 12 and 13 exhibited pupation (larva-killing activity) or of adult the larva-killing activity at a concentration of emergence from the pupae formed. either 1700 ppm or 3500 ppm, whereas acetyl- As shown in Table I, chavicol (1) exhibited derivatives, 11 and 14, were relatively inac the larva-killing activity at a concentration of tive and only inhibited the adult-emergence at ca. 1700ppm. The activities of the derivatives a higher concentration. of 1 such as chavicol methyl ether (estragole) The remarkable activity was not found in (2), acetyl chavicol (3) and dihydrochavicol (4) phenol (15), o-cresol (16) and other simple are summarized in Table II. Dihydrochavicol phenols (17•`21) containing two or three (4) showed the larva-killing activity at an equal phenolic hydroxyls as summarized in Table IV. concentration to 1. On the other hand , the Since myristicin (5-allyl-l-methoxy-2, 3- activity was not found in both 2 and 3, where methylenedioxybenzene) (22), one of the re- TABLE II. THE EFFECTS OF CHAVICOL-DERIVATIVES ON THE LARVA-GROWTH OF D. melanogaster Chavicol, as a Larva-growth Inhibitor, from V. japonicum 2285 TABLE III. THE EFFECTS OF CHAVICOL-RELATED COMPOUNDS ON THE LARVA-GROWTH OF D. melanogaster TABLE IV. THE EFFECTS OF PHENOLS ON THE LARVA-GROWTH OF D. melanogaster TABLE V. THE EFFECTS OF CHAVICOL AND ITS RELATED COMPOUNDS ON THE ADULTS OF D. melanogaster 2286 H. OHIGASHI and K. KOSHIMlZU lated compounds, was isolated as a drosophila emerged, which were transferred into a new culture adult-killing component from Pastinica sativum bottle. In this procedure, continuous supply of the adults and larvae was possible. L.,8) the effects of chavicol (1) and the related In the larva-growth inhibitory assay, 1.5ml of the compounds, 2, 3 and 5, on the adults were solution A was added to a certain amount of a sample tested by a paper disk method. As shown in to be tested in a test tube (1.5cm i.d.•~3.0cm height). Table V, chavicol (1) and eugenol (5) showed Then 1.5ml of the solution B, in which the agar was knocked down effect. Chavicol methyl ether previously dissolved, was added to the solution thus pre pared with shaking. After the medium was cooled to (2) and acetyl chavicol (3), however, were inac room temperature, 20mg of dry yeast was added to the tive against the adults. medium. Ten larvae, which were 48•`72 hr old after The results through the experiments on the hatching (2nd instar) were placed on the medium and activities of chavicol and its related compounds cultivated in a usual way. A control experiment was against the larvae and adults suggested carried out on a medium without the sample. that both an alkyl side chain and a free phenolic The effects of compounds on the adults were tested by a paper disk method. A Toyo-filter paper (No. hydroxy or methylenedioxy group (in the case 2) disk (1.3cm diameter) which had been dipped in a of safrole) play significant roles to exhibit the chloroform solution of a sample at a certain concentra activities. tion, was placed on the bottom of a test tube (1.5cm Further study on the structure/activity rela i.d.•~3.0cm height). A control experiment was run tionship on chavicol and the related compounds on a paper disk without the sample. The solvent was evaporated under reduced pressure and ten adults were is in progress. introduced into the tube. After 15 min, 30min, 3hr and 24hr, the adults, either motionless or unable to stand, were registered as knocked down. EXPERIMENTAL PMR spectra were obtained on a Hitachi Model R-22 Extraction and isolation of the active component spectrometer (90MHz) in CDCl3 and chemical shifts (1). The fresh leaves (500g) of V. japonicum were are expressed in ppm from tetramethyl silane as an extracted with methanol. Evaporation of methanol internal standard. IR and UV spectra were recorded on gave an aqueous extract which was extracted with a Hitachi EPI-G3 infrared spectrometer and a Shi ethyl acetate. The ethyl acetate layer was dried over madzu UV-200 spectrophotometer, respectively. The anhydrous sodium sulphate and the solvent was re following chromatographic materials were used: moved to give a dark-green viscous matter. It was silicic acid (Mallinckrodt, 100mesh, U. S. A.), Florisil chromatographed on silicic acid-Celite 545 (1:1) (Floridin Company, 100•`200 mesh), silica gel PF254 which was eluted with benzene of an increasing ratio (Merck, for preparative TLC) and Celite 545 washed of ethyl acetate. The fraction eluted with 5% ethyl successively with distilled water and acetone and then acetate in benzene was further chromatographed on dried for 5 hr before use. Florisil by a stepwise elution from benzene to ethyl acetate. The active fraction eluted with 5% ethyl Bio-assay. The larvae and the adults of D. melano acetate in benzene was purified by preparative TLC gaster (Oregon R) were used for the bio-assay. The on silica gel PF254 to give a colorless oil (20mg) as an drosophilae were cultivated on a Pearl's synthetic active component (1). medium, made up as follows: solution A; water (300 ml), KNaC4H4O6•E4H2O (5g), MgSO4•E7H2O (0.3g), Chavicol from estragole (2). To a solution of methyl CaCl2 (1.5g), (NH4)2SO4 (1.2g), sucrose (50g), and iodide (7.2g) in dry ether (20ml) was added magnesium solution B; water (300ml), tartaric acid (3g), KH2 ribbon (1.3g) step by step with ice-cooling and stirring. PO4 (0.6g), agar (13.5g). After dissolving of magnesium, the solvent was removed The agar in solution B was dissolved by heating, and from the reaction mixture on a water bath and then an equal parts (20ml) of solution A and B were mixed in a oil bath successively to give a solid.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2012 Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Forest Sciences Commons Recommended Citation Cummings, Kate, "Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole" (2012). All Theses. 1345. https://tigerprints.clemson.edu/all_theses/1345 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SASSAFRAS TEA: USING A TRADITIONAL METHOD OF PREPARATION TO REDUCE THE CARCINOGENIC COMPOUND SAFROLE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Forest Resources by Kate Cummings May 2012 Accepted by: Patricia Layton, Ph.D., Committee Chair Karen C. Hall, Ph.D Feng Chen, Ph. D. Christina Wells, Ph. D. ABSTRACT The purpose of this research is to quantify the carcinogenic compound safrole in the traditional preparation method of making sassafras tea from the root of Sassafras albidum. The traditional method investigated was typical of preparation by members of the Eastern Band of Cherokee Indians and other Appalachian peoples. Sassafras is a tree common to the eastern coast of the United States, especially in the mountainous regions. Historically and continuing until today, roots of the tree are used to prepare fragrant teas and syrups.
    [Show full text]
  • Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-Aryl-2-Propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil
    Journal of Chromatographic Science, Vol. 29, June 1991 Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-aryl-2-propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil F.T. Noggle, Jr. Alabama Department of Forensic Sciences, Wire Road, Auburn, Alabama 36830 C. Randall Clark and Jack DeRuiter Department of Pharmacal Sciences, School of Pharmacy, Auburn University, Auburn, Alabama 36849 A variety of methods have been reported for the synthesis of I Abstract I MDA, MDMA, and related compounds (5,6). The most direct One method used for the synthesis of the illicit drug N-methyl- approach involves treatment of the commercially available 1-(3,4-methylenedioxyphenyl)-2-propanami ne (methylene- ketone 1-(3,4-methylenedioxyphenyl)-2-propanone (3,4- dioxymethamphetamine, MDMA) involves the treatment of methylenedioxyphenylacetone) with ammonia or methylamine safrole with HBr to form the intermediate 2-bromosafrole, under reducing conditions as shown in Scheme 1. Based on this followed by bromide displacement with methylamine. The synthetic strategy, the availability of the ketone was controlled by starting material required for this synthesis, safrole, may be the Drug Enforcement Administration under the Chemical Di- obtained from sassafras oil which is isolated from the roots of version and Trafficking Act in March of 1989. The restricted the sassafras plant. In addition to safrole, sassafras oil availability of the key ketone precursor has forced clandestine contains other allyl benzenes such as eugenol and 4-allyl-1 ,2- laboratory operators to seek alternative approaches for the syn- dimethoxybenzene. Gas chromatography-mass spectrometric thesis of MDA and MDMA. One such alternate method em- (GC-MS) studies show that these allyl benzenes may also be ploys the natural product safrole, which is commercially avail- brominated and undergo amine displacement to yield the able or can be obtained by extraction or distillation of the corresponding N-methyl-1-aryl-2-propanamines.
    [Show full text]
  • Piper Betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications
    molecules Review Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications Ni Made Dwi Mara Widyani Nayaka 1,* , Maria Malida Vernandes Sasadara 1 , Dwi Arymbhi Sanjaya 1 , Putu Era Sandhi Kusuma Yuda 1 , Ni Luh Kade Arman Anita Dewi 1 , Erna Cahyaningsih 1 and Rika Hartati 2 1 Department of Natural Medicine, Mahasaraswati University of Denpasar, Denpasar 80233, Indonesia; [email protected] (M.M.V.S.); [email protected] or [email protected] (D.A.S.); [email protected] (P.E.S.K.Y.); [email protected] (N.L.K.A.A.D.); [email protected] or [email protected] (E.C.) 2 Pharmaceutical Biology Department, Bandung Institute of Technology, Bandung 40132, Indonesia; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Piper betle (L) is a popular medicinal plant in Asia. Plant leaves have been used as a tradi- tional medicine to treat various health conditions. It is highly abundant and inexpensive, therefore promoting further research and industrialization development, including in the food and pharma- ceutical industries. Articles published from 2010 to 2020 were reviewed in detail to show recent updates on the antibacterial and antifungal properties of betel leaves. This current review showed that betel leaves extract, essential oil, preparations, and isolates could inhibit microbial growth and kill various Gram-negative and Gram-positive bacteria as well as fungal species, including those that Citation: Nayaka, N.M.D.M.W.; are multidrug-resistant and cause serious infectious diseases. P. betle leaves displayed high efficiency Sasadara, M.M.V.; Sanjaya, D.A.; on Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria Yuda, P.E.S.K.; Dewi, N.L.K.A.A.; such as Staphylococcus aureus, and Candida albicans.
    [Show full text]
  • Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination
    Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination Keng Hong Tan1a* and Ritsuo Nishida2b 1Tan Hak Heng, 20, Jalan Tan Jit Seng, 11200 Penang, Malaysia 2Laboratory of Chemical Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan Abstract This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants. Keywords: allomone, attractant, Bactrocera, chemical ecology, floral fragrance, insect pollinators, plant–insect interactions, plant semiochemicals, sex pheromone, synomone, tephritid fruit flies Abbreviations: ME, methyl eugenol; RK, raspberry ketone Correspondence: a [email protected], b [email protected], *Corresponding author Editor: Todd Shelly was editor of this paper. Received: 28 April 2011, Accepted: 27 August 2011 Copyright : This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 12, Number 56 Cite this paper as: Tan KH, Nishida R. 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12:56 available online: insectscience.org/12.56 Journal of Insect Science | www.insectscience.org 1 Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida 1. Introduction ME has been successfully used in: a) fruit fly surveys (Tan and Lee 1982) and quarantine Plants produce a huge array of chemicals, detection (see reviews by Metcalf and Metcalf numbering tens of thousands, primarily for 1992; Vargas et al.
    [Show full text]
  • Ab Initio Chemical Safety Assessment
    Ab initio chemical safety assessment : A workflow based on exposure considerations and non-animal methods Elisabet Berggren, Andrew White, Gladys Ouedraogo, Alicia Paini, Andrea-Nicole Richarz, Frédéric Y. Bois, Thomas Exner, Sofia Batista Leite, L. van Grunsven, Andrew P. Worth, et al. To cite this version: Elisabet Berggren, Andrew White, Gladys Ouedraogo, Alicia Paini, Andrea-Nicole Richarz, et al.. Ab initio chemical safety assessment : A workflow based on exposure considerations and non-animal meth- ods. Computational Toxicology, 2017, 4, pp.31-44. 10.1016/j.comtox.2017.10.001. ineris-01863939 HAL Id: ineris-01863939 https://hal-ineris.archives-ouvertes.fr/ineris-01863939 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computational Toxicology 4 (2017) 31–44 Contents lists available at ScienceDirect Computational Toxicology journal homepage: www.elsevier.com/locate/comtox Ab initio chemical safety assessment: A workflow based on exposure MARK considerations and non-animal methods ⁎ Elisabet Berggrena, , Andrew Whiteb,
    [Show full text]
  • Final Report: Development of Methods to Quantitatively Extract Biologically
    DEVELOPMENT OF METHODS TO QUANTITATIVELY EXTRACT BIOLOGICALLY ACTIVE PRINCIPLES FROM COMPLEX FOODS, FLAVOURINGS AND HERBS AND SPICES, TO ALLOW THEIR SUBSEQUENT ANALYSIS FINAL REPORT Report Number FD 10/01 Authors M Scotter and G Rees Date March 2010 Sponsor Food Standards Agency Aviation House 125 Kingsway London WC2B 6NH Sponsor's Project No. A01067 Fera Project No. R6NL Fera File No. FLN 8882 Principal Workers M Scotter, D Roberts and G Rees Contract Manager M Scotter Distribution: 1. Dr W Dixon (FSA) (2 x printed plus electronic) 2. Fera Information Centre DEFRA Food and Environment Research Agency York YO41 1LZ (UK) Telephone: 01904 462000 Fax: 01904 462111 Page 1 of 79 Executive summary 1. This report details the findings of Food Standards Agency Project A01067: Development of methods to quantitatively extract biologically active principles (BAPs) from complex foods, flavourings and herbs and spices, to allow their subsequent analysis. These flavouring compounds cover a range of chemical types and this makes their extraction and determination in foods and beverages analytically challenging. 2. The analytical strategy adopted therefore was to develop three separate methods for each chemical / physical class of BAP: I. Volatile BAPs by simultaneous distillation-extraction (SDE) of the sample followed by GC-MS quantitation. II. Coumarin and quassine by solvent extraction of the sample, clean-up using solid phase extraction cartridges and then quantitation by HPLC with UV detection. III. Hydrogen cyanide by extraction of the sample using acidic medium, enzymatic hydrolysis of glycosidic cyanogens to cyanohydrins, hydrolysis of these to cyanide, and lastly derivatisation using a modified König reaction to form a coloured complex which is determined spectrophotometrically.
    [Show full text]
  • The Relative Content and Distribution of Absorbed Volatile Organic
    molecules Article The Relative Content and Distribution of Absorbed Volatile Organic Compounds in Rats Administered Asari Radix et Rhizoma Are Different between Powder- and Decoction-Treated Groups Guang-Xue Liu 1, Feng Xu 1, Ming-Ying Shang 1,*, Xuan Wang 2 and Shao-Qing Cai 1,* 1 Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] (G.-X.L.); [email protected] (F.X.) 2 Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] * Correspondence: [email protected] (M.-Y.S.); [email protected] (S.-Q.C.); Tel.: +86-10-8280-2534 (M.-Y.S.); +86-10-8280-1693 (S.-Q.C.) Received: 20 August 2020; Accepted: 25 September 2020; Published: 27 September 2020 Abstract: Asari Radix et Rhizoma (ARR) is an important traditional Chinese medicine. Volatile organic compounds (VOCs) are the main active constituents of ARR. Research on the metabolite profile of VOCs and the difference of absorbed constituents in vivo after an administration of ARR decoction and powder will be helpful to understand the pharmacological activity and safety of ARR. In this study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS–SPME–GC–MS) was applied to profile the VOCs from ARR in rats in vivo. A total of 153 VOCs were tentatively identified; 101 were original constituents of ARR (98 in the powder-treated group and 43 in the decoction-treated group) and 15 were metabolites, and their metabolic reactions were mainly oxidation and reduction, with only two cases of methylation and esterification, and 37 unclassified compounds were identified only in the ARR-treated group.
    [Show full text]
  • 2-History-Of-Photo-Ciamician--Jce-1.Pdf
    Ned D. Heindel Marshall University Huntington, West Virginia A Profitable Partnership and Michel A. Pfau Ecole Normale Supkrieure Giacomo Ciamician and Paul Silber Paris, France I The development of modern science has At the University of Vienna, and later at the Chemical had many important and fruitful cooperating con- Institute in Rome, Ciamician developed his ideas on tributors-Liebig and Wohler, the Curies, and Gay- spectroscopy into what was probably the first formal Lussac and Thenard, to name but a few. None of course on the subject. these partnerships achieved a level of productivity After transferring to Giessen, because it was the only and accomplishment approaching that of Giacomo university which accepted students without a required Ciamician (1857-1922) and Paul Silber (1851-1932). prior diploma in classics, he received his doctorate in In more than 35 years of cooperation and friendship, the 1880 and joined the Cannizzaro group in Rome. For Armenian Ciamician and the German Silber raised the the next seven years he concentrated almost entirely stature of chemical research in their adopted Italy to on pyrrole chemistry and in 1887 was awarded the Royal world renown. In a succession of at lcast 378 scientific Academy of Lincei prize for his discoveries. publications they discovered a valuable antiseptic; In 1887 he wa8 offered a post at the University of developed a pyrrole-pyridine ring expansion; added Padua, and two years later the University of Bologna contributions to terpene, essential oil, and pyrrolc called him to a professorship. Silber accompanied him chemistry; and virtually initiated the field of organic to these universities and was later appointed as an photochemistry.
    [Show full text]
  • Assessment of Antimicrobial Activity, Mode of Action and Volatile Compounds of Etlingera Pavieana Essential Oil
    molecules Article Assessment of Antimicrobial Activity, Mode of Action and Volatile Compounds of Etlingera pavieana Essential Oil Porawan Naksang 1 , Sasitorn Tongchitpakdee 1, Kanjana Thumanu 2, Maria Jose Oruna-Concha 3, Keshavan Niranjan 3 and Chitsiri Rachtanapun 1,4,* 1 Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; [email protected] (P.N.); [email protected] (S.T.) 2 Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand; [email protected] 3 Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK; [email protected] (M.J.O.-C.); [email protected] (K.N.) 4 Center for Advanced Studied Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand * Correspondence: [email protected]; Tel.: +66-2562-5000 (ext. 5206) Academic Editors: Francesca Mancianti and Satyajit Sarker Received: 25 May 2020; Accepted: 13 July 2020; Published: 16 July 2020 Abstract: Etlingera pavieana (Pierre ex Gagnep.) R.M.S. is a rhizomatous plant in the Zingiberaceae family which could be freshly eaten, used as a condiment or as a traditional remedy. Our work investigated the chemical composition and antimicrobial activity of the E. pavieana essential oils extracted from the rhizome (EOEP). We extracted the EOEP from the rhizome by hydrodistillation and analyzed the chemical composition by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC/MS). A total of 22 volatile compounds were identified where trans-anethole (78.54%) and estragole (19.36%) were the major components in the EOEP.
    [Show full text]
  • Betel-Like-Scented Piper Plants As Diverse Sources of Industrial and Medicinal Aromatic Chemicals
    Chiang Mai J. Sci. 2014; 41(5.1) 1171 Chiang Mai J. Sci. 2014; 41(5.1) : 1171-1181 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Betel-like-scented Piper Plants as Diverse Sources of Industrial and Medicinal Aromatic Chemicals Arisa Sanubol [a], Arunrat Chaveerach*[a], Runglawan Sudmoon [a], Tawatchai Tanee [b], Kowit Noikotr [c] and Chattong Chuachan [d] [a] Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. [b] Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham 44000, Thailand. [c] Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand. [d] Garden and Development Department, Queen Sirikit Botanic Garden, The Botanical Garden Organization, Chiang Mai 50180, Thailand. *Author for correspondence; e-mail: [email protected] Received: 21 May 2013 Accepted: 10 August 2013 ABSTRACT Piper betle (Piperaceae) or betel leaf, known locally as “Phlu” has been used by people in Thailand for chewing for a long time. Additionally, the leaves are used for traditional remedies and folk customs, such as for weddings and housewarming ceremonies. More recently, the aromatic oil industry has used the leaves for oil distillation. Moreover, the oils are used in several household products. Over the past 12 years of our research on Piper species, we found that among the more than 43 species recorded, there are some plants other than P. betle that possess a betel-like scent, viz. P. betloides, P. crocatum, P. maculaphyllum, P. rubroglandulosum, P. semiimmersum, P. submultinerve, P. tricolor, and P. yinkiangense. As it was expected that these plants would contain similar useful chemicals, their extracts were screened for the chemical contents by GC-MS.
    [Show full text]
  • Eugenol and Isoeugenol, Characteristic Aromatic Constituents of Spices, Are Biosynthesized Via Reduction of a Coniferyl Alcohol Ester
    Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester Takao Koeduka*†, Eyal Fridman*†‡, David R. Gang†§, Daniel G. Vassa˜ o¶, Brenda L. Jackson§, Christine M. Kishʈ, Irina Orlovaʈ, Snejina M. Spassova**, Norman G. Lewis¶, Joseph P. Noel**, Thomas J. Baiga**, Natalia Dudarevaʈ, and Eran Pichersky*†† *Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048; §Department of Plant Sciences and Institute for Biomedical Science and Biotechnology, University of Arizona, Tucson, AZ 85721-0036; ¶Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; ʈDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and **Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Anthony R. Cashmore, University of Pennsylvania, Philadelphia, PA, May 5, 2006 (received for review March 31, 2006) Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food pres- ervation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the en- zymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glan- dular trichomes of sweet basil (Ocimum basilicum), which synthe- size and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol.
    [Show full text]