Final Report: Development of Methods to Quantitatively Extract Biologically
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 5-2012 Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Forest Sciences Commons Recommended Citation Cummings, Kate, "Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole" (2012). All Theses. 1345. https://tigerprints.clemson.edu/all_theses/1345 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SASSAFRAS TEA: USING A TRADITIONAL METHOD OF PREPARATION TO REDUCE THE CARCINOGENIC COMPOUND SAFROLE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Forest Resources by Kate Cummings May 2012 Accepted by: Patricia Layton, Ph.D., Committee Chair Karen C. Hall, Ph.D Feng Chen, Ph. D. Christina Wells, Ph. D. ABSTRACT The purpose of this research is to quantify the carcinogenic compound safrole in the traditional preparation method of making sassafras tea from the root of Sassafras albidum. The traditional method investigated was typical of preparation by members of the Eastern Band of Cherokee Indians and other Appalachian peoples. Sassafras is a tree common to the eastern coast of the United States, especially in the mountainous regions. Historically and continuing until today, roots of the tree are used to prepare fragrant teas and syrups. -
Chavicol, As a Larva-Growth Inhibitor, from Viburnum Japonicum Spreng
Agr. Biol. Chem., 40 (11), 2283•`2287, 1976 Chavicol, as a Larva-growth Inhibitor, from Viburnum japonicum Spreng. Hajime OHIGASHI and Koichi KOSHIMIZU Department of Food Science and Technology. Kyoto University, Kyoto Japan Received July 22, 1976 Chavicol was isolated as a drosophila larva-growth inhibitor from the leaves of Viburnum japonicum Spreng. The inhibitory activities of chavicol and its related compounds against drosophila larvae and adults were examined. To obtain biologically active substances assignable to allylic, terminal olefinic, a hydrox against insects from plants, we recently devised yl, an olefinic and 1, 4-di-substituted benzene a convenient bio-assay using drosophila larvae. ring protons, respectively. The double The assay is of great advantage to judge easily resonance experiment clarified that the protons the effects of compounds on the growth of the at ƒÂ 3.26 coupled with both the proton at ƒÂ insects at each stage from the larvae to the 5.7•`6.2 (with J=7Hz) and protons at ƒÂ 4.9•` adults. In the screening of plant extracts by this method, we found that the methanol ex tract of the leaves of Viburnum japonicum Spreng. inhibited remarkably the growth of the larvae. We report here the isolation, identification of the active component of V. japonicum, and also report the activities of the component and the related compounds against the adults as well as the larvae. An ethyl acetate-soluble part of the methanol extract was chromatographed on silicic acid- Celite 545 eluted with benzene of an increasing ratio of ethyl acetate. The larva-killing activi ty was found in a fraction eluted with 5% ethyl acetate in benzene. -
Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-Aryl-2-Propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil
Journal of Chromatographic Science, Vol. 29, June 1991 Gas Chromatographic and Mass Spectrometric Analysis of N-Methyl-1-aryl-2-propanamines Synthesized from the Substituted Allylbenzenes Present in Sassafras Oil F.T. Noggle, Jr. Alabama Department of Forensic Sciences, Wire Road, Auburn, Alabama 36830 C. Randall Clark and Jack DeRuiter Department of Pharmacal Sciences, School of Pharmacy, Auburn University, Auburn, Alabama 36849 A variety of methods have been reported for the synthesis of I Abstract I MDA, MDMA, and related compounds (5,6). The most direct One method used for the synthesis of the illicit drug N-methyl- approach involves treatment of the commercially available 1-(3,4-methylenedioxyphenyl)-2-propanami ne (methylene- ketone 1-(3,4-methylenedioxyphenyl)-2-propanone (3,4- dioxymethamphetamine, MDMA) involves the treatment of methylenedioxyphenylacetone) with ammonia or methylamine safrole with HBr to form the intermediate 2-bromosafrole, under reducing conditions as shown in Scheme 1. Based on this followed by bromide displacement with methylamine. The synthetic strategy, the availability of the ketone was controlled by starting material required for this synthesis, safrole, may be the Drug Enforcement Administration under the Chemical Di- obtained from sassafras oil which is isolated from the roots of version and Trafficking Act in March of 1989. The restricted the sassafras plant. In addition to safrole, sassafras oil availability of the key ketone precursor has forced clandestine contains other allyl benzenes such as eugenol and 4-allyl-1 ,2- laboratory operators to seek alternative approaches for the syn- dimethoxybenzene. Gas chromatography-mass spectrometric thesis of MDA and MDMA. One such alternate method em- (GC-MS) studies show that these allyl benzenes may also be ploys the natural product safrole, which is commercially avail- brominated and undergo amine displacement to yield the able or can be obtained by extraction or distillation of the corresponding N-methyl-1-aryl-2-propanamines. -
Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination
Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination Keng Hong Tan1a* and Ritsuo Nishida2b 1Tan Hak Heng, 20, Jalan Tan Jit Seng, 11200 Penang, Malaysia 2Laboratory of Chemical Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan Abstract This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants. Keywords: allomone, attractant, Bactrocera, chemical ecology, floral fragrance, insect pollinators, plant–insect interactions, plant semiochemicals, sex pheromone, synomone, tephritid fruit flies Abbreviations: ME, methyl eugenol; RK, raspberry ketone Correspondence: a [email protected], b [email protected], *Corresponding author Editor: Todd Shelly was editor of this paper. Received: 28 April 2011, Accepted: 27 August 2011 Copyright : This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 12, Number 56 Cite this paper as: Tan KH, Nishida R. 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12:56 available online: insectscience.org/12.56 Journal of Insect Science | www.insectscience.org 1 Journal of Insect Science: Vol. 12 | Article 56 Tan and Nishida 1. Introduction ME has been successfully used in: a) fruit fly surveys (Tan and Lee 1982) and quarantine Plants produce a huge array of chemicals, detection (see reviews by Metcalf and Metcalf numbering tens of thousands, primarily for 1992; Vargas et al. -
Ab Initio Chemical Safety Assessment
Ab initio chemical safety assessment : A workflow based on exposure considerations and non-animal methods Elisabet Berggren, Andrew White, Gladys Ouedraogo, Alicia Paini, Andrea-Nicole Richarz, Frédéric Y. Bois, Thomas Exner, Sofia Batista Leite, L. van Grunsven, Andrew P. Worth, et al. To cite this version: Elisabet Berggren, Andrew White, Gladys Ouedraogo, Alicia Paini, Andrea-Nicole Richarz, et al.. Ab initio chemical safety assessment : A workflow based on exposure considerations and non-animal meth- ods. Computational Toxicology, 2017, 4, pp.31-44. 10.1016/j.comtox.2017.10.001. ineris-01863939 HAL Id: ineris-01863939 https://hal-ineris.archives-ouvertes.fr/ineris-01863939 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computational Toxicology 4 (2017) 31–44 Contents lists available at ScienceDirect Computational Toxicology journal homepage: www.elsevier.com/locate/comtox Ab initio chemical safety assessment: A workflow based on exposure MARK considerations and non-animal methods ⁎ Elisabet Berggrena, , Andrew Whiteb, -
The Relative Content and Distribution of Absorbed Volatile Organic
molecules Article The Relative Content and Distribution of Absorbed Volatile Organic Compounds in Rats Administered Asari Radix et Rhizoma Are Different between Powder- and Decoction-Treated Groups Guang-Xue Liu 1, Feng Xu 1, Ming-Ying Shang 1,*, Xuan Wang 2 and Shao-Qing Cai 1,* 1 Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] (G.-X.L.); [email protected] (F.X.) 2 Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] * Correspondence: [email protected] (M.-Y.S.); [email protected] (S.-Q.C.); Tel.: +86-10-8280-2534 (M.-Y.S.); +86-10-8280-1693 (S.-Q.C.) Received: 20 August 2020; Accepted: 25 September 2020; Published: 27 September 2020 Abstract: Asari Radix et Rhizoma (ARR) is an important traditional Chinese medicine. Volatile organic compounds (VOCs) are the main active constituents of ARR. Research on the metabolite profile of VOCs and the difference of absorbed constituents in vivo after an administration of ARR decoction and powder will be helpful to understand the pharmacological activity and safety of ARR. In this study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS–SPME–GC–MS) was applied to profile the VOCs from ARR in rats in vivo. A total of 153 VOCs were tentatively identified; 101 were original constituents of ARR (98 in the powder-treated group and 43 in the decoction-treated group) and 15 were metabolites, and their metabolic reactions were mainly oxidation and reduction, with only two cases of methylation and esterification, and 37 unclassified compounds were identified only in the ARR-treated group. -
2-History-Of-Photo-Ciamician--Jce-1.Pdf
Ned D. Heindel Marshall University Huntington, West Virginia A Profitable Partnership and Michel A. Pfau Ecole Normale Supkrieure Giacomo Ciamician and Paul Silber Paris, France I The development of modern science has At the University of Vienna, and later at the Chemical had many important and fruitful cooperating con- Institute in Rome, Ciamician developed his ideas on tributors-Liebig and Wohler, the Curies, and Gay- spectroscopy into what was probably the first formal Lussac and Thenard, to name but a few. None of course on the subject. these partnerships achieved a level of productivity After transferring to Giessen, because it was the only and accomplishment approaching that of Giacomo university which accepted students without a required Ciamician (1857-1922) and Paul Silber (1851-1932). prior diploma in classics, he received his doctorate in In more than 35 years of cooperation and friendship, the 1880 and joined the Cannizzaro group in Rome. For Armenian Ciamician and the German Silber raised the the next seven years he concentrated almost entirely stature of chemical research in their adopted Italy to on pyrrole chemistry and in 1887 was awarded the Royal world renown. In a succession of at lcast 378 scientific Academy of Lincei prize for his discoveries. publications they discovered a valuable antiseptic; In 1887 he wa8 offered a post at the University of developed a pyrrole-pyridine ring expansion; added Padua, and two years later the University of Bologna contributions to terpene, essential oil, and pyrrolc called him to a professorship. Silber accompanied him chemistry; and virtually initiated the field of organic to these universities and was later appointed as an photochemistry. -
Phenols and Phenolic Ethers They Are Among the Most Important Constituents of Volatile Oils
Phenols and phenolic ethers They are among the most important constituents of volatile oils. General methods of isolation: Phenols (weak acids) form water soluble salts with dilute alkali solutions (3-5%). Therefore the oil containing phenols is shaken with dilute aqueous solution of alkalis; O OH Na+ + HOH + Na+ OH – Phenol Sodium phenoxide 1 General methods of isolation of phenols The aqueous layer is separated then acidified (to liberate the phenol) and either steam distilled or extracted with ether. 2 General methods of isolation Phenols and phenolic ethers By cooling the oil or the suitable fraction, some phenols and phenolic ethers can be separated in crystalline form. General characters of terpene phenols : With FeCl3 colored iron compounds. Undergo some reactions characteristic of alcohols;OH as reactions with acetic anhydride, phenyl isocyanate,… 3 Classification Phenols and phenolic ethers may be grouped into: - Monohydric (thymol) - Dihydric (eugenol, safrole,..) - Trihydric (myristicin) - Tetrahydric (apiole) 4 Monohydric phenols OH p-Cymene Thymol 3-Hydroxy-p-cymene Oil of Thyme,Thymus vulgaris, F Labiatae (Lamiaceae) 5 Thymol Isolation: Fractional distillation OH Cooling the oil crystals Using KOH (5%) Synthesis -Isopropyl alcohol -Catalyst OH m-cresol 6 Thymol Properties: Large crystals with a thyme-like odour and a pungent taste. Soluble (1:1200) in water, (1:1) in alcohol, soluble in ether, chloroform,…. Identification: Through derivatives: as phenyl urethanes, dinitrobenzoate,…. Color reactions: Thymol+ gl. Acetic acid + 3 drops conc. H2SO4 + 1 drop conc. HNO3 greenish-blue colour. 7 Thymol Thymol+ conc. H2SO4 thymol sulfonic acid +FeCl3 violet colour. Uses: Thymol has disinfectant and antibacterial properties; employed in some antiseptic mixtures as gargles, mouthwashes and dental preparations. -
Electrochemical Oxidation of Fragrances 4-Allyl and 4-Propenylbenzenes on Platinum and Carbon Paste Electrodes
CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 88 (1) (2015) 35–42. http://dx.doi.org/10.5562/cca2342 Original Scientific Article Electrochemical Oxidation of Fragrances 4-Allyl and 4-Propenylbenzenes on Platinum and Carbon Paste Electrodes Lai-Hao Wang,* Chia-Ling Chang, and Yi-Chun Hu Department of Medical Chemistry, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Jen Te, Tainan 71743, Taiwan RECEIVED MAY 19, 2013; REVISED MARCH 10, 2014; ACCEPTED JULY 21, 2014 Abstract. The electrochemical oxidation behaviors of 4-allylbenzenes (estragole, safrole and eugenol) and 4-propenylbenzenes (anethole, asarone and isoeugenol) on platinum and carbon paste electrodes were in- vestigated in a Britton-Robinson buffer (pH = 2.93 and 10.93), acetate buffer, phosphate buffer solutions (pH = 2.19 and 6.67), and acetonitrile containing various supporting electrolytes examined lithium per- chlorate. Their oxidation potential with Hammett (free-energy relationships) and possible reaction mecha- nisms were discussed. Keywords: electrochemical oxidation, 4-allylbenzenes, 4-propenylbenzenes INTRODUCTION studied to undergo electrochemical polymerization giving rise to either conducting or insulating films.17–19 Research on fragrances / flavors is popular; however, The anodic methoxylation of alkenylbenzenes includes almost all studies focus on their wide application in the anethole and isosafrole on graphite and platinum, food, and cosmetics industries and in traditional medi- which can be converted to free aldehyde, a valuable cine; as well as extraction methods and analytical fragrance compound and an intermediate for organic methodologies.1–5 Fragrances that are air-sensitive may synthesis.20–23 The present work is concerned with the form peroxides, respiratory irritants, and aerosol parti- measurement of aromatic substituent effects and struc- cles that cause inflammatory responses in the lungs. -
Public Statement on the Use of Herbal Medicinal Products Containing Estragole EMA/HMPC/137212/2005 Page 2/19
1 24 November 2014 2 EMA/HMPC/137212/2005 Rev 1 3 Committee on Herbal Medicinal Products (HMPC) 4 Public statement on the use of herbal medicinal products 5 containing estragole 6 7 DRAFT Revision 1 Draft discussed by Committee on Herbal Medicinal Products (HMPC) January 2005 March 2005 Release for consultation April 2005 Deadline for comments June 2005 Rediscussion in HMPC November 2005 Adoption by HMPC November 2005 Draft Revision 1 discussed by MLWP/HMPC September 2013 November 2013 January 2014 May 2014 June/July 2014 September 2014 Coordination with Safety Working Party (SWP) Feb-July 2014 Draft Revision 1 adopted by HMPC for release for consultation 24 November 2014 End of consultation (deadline for comments) 31 March 2015 Comments should be provided using this template. The completed comments form should be sent to [email protected] Keywords Herbal medicinal products; HMPC; estragole 8 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. 9 10 Table of contents 11 Table of contents ......................................................................................... 2 12 1. Introduction (Problem statement) .......................................................... 3 13 1.1. Estragole in plants and plant preparations .............................................................. -
Attraction of the Oriental Fruit Fly, Dacus Dorsalis, to Methyl Eugenol and Related Olfactory Stimulants (Olfaction/Receptor/Methyl Eugenol Isosteres) ROBERT L
Proc. Nat. Acad. Sci. USA Vol. 72, No. 7, pp. 2501-2505, July 1975 Applied Biology Attraction of the oriental fruit fly, Dacus dorsalis, to methyl eugenol and related olfactory stimulants (olfaction/receptor/methyl eugenol isosteres) ROBERT L. METCALF, W. C. MITCHELL*, T. R. FUKUTOt, AND ESTHER R. METCALF Department of Entomology, University of Illinois, Urbana-Champaign, Ill. 61801 Coptributed by Robert L. Metcalf, April 23, 1975 ABSTRACT The attraction of male oriental fruit flies to sorption of the stimulant on a lipoprotein patch of specific methyl eugenol and 34 analogues was investigated quantita- dimensions with a resultant depolarization of the sensory tively using the characteristic feeding response. Methyl euge- cell. This-idea is the basis of Amoore's stereochemical theory nol was the most active compound studied, with a feeding re- and be to the of sub- sponse to 0.01 Ag, but saturation of the allyl side chain or re- of odor (5), may analogous absorption p acement of allyl by allyloxy produced compounds almost as strate or inhibitor molecules at the active site of an enzyme. effective. Replacement of the methoxy groups by methylene- We have attempted a preliminary mapping of the proposed dioxy, methyl, or chloro groups abolished all response. The stereospecific receptor patch by studying the response to ring geometry of the methoxy groups was critical, with ortho- isosteres of methyl eugenol. This technique has been very dimethoxy most active and meta-dimethoxy inactive. Re- useful in our studies of the nature of the active site of acetyl placement of methoxy with hydroxy, methylthio, or amino groups did not abolish the response. -
Colour Tests for Precursor Chemicals of Amphetamine-Type Substances
SCITEC/21 SCIENTIFIC AND TECHNICAL NOTES December 2007 Colour Tests for Precursor Chemicals of Amphetamine-Type Substances Systematic study of colour tests for safrole and safrole-rich essential oils Andreas Leitner, Hildegard Lechner, Peter Kainz Chemie-Ingenieurschule Graz, Austria Table of contents INTRODUCTION............................................................................................................................................... 3 Abstract........................................................................................................................................................... 3 Background..................................................................................................................................................... 3 Objectives........................................................................................................................................................ 5 Procedure........................................................................................................................................................ 5 EXPERIMENTAL .............................................................................................................................................. 5 1. MATERIALS AND METHODS ........................................................................................ 5 1.1. Essential oils tested.................................................................................................................................. 5 1.2. Reference